Skip to content

Commit

Permalink
rework convert.py to read hyper-parameters from config.json (ggergano…
Browse files Browse the repository at this point in the history
…v#1958)

* Read hyper-parameters from HuggingFace-transformer config.json, if they exist, and fall back to guessing, like before otherwise.
  This allows converting open_llama 3B and other non-standard model designs.
  • Loading branch information
Green-Sky authored Jun 22, 2023
1 parent bbca06e commit 7487137
Showing 1 changed file with 69 additions and 22 deletions.
91 changes: 69 additions & 22 deletions convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -130,28 +130,76 @@ def make_tensors_list() -> List[str]:
TENSORS_SET = set(TENSORS_LIST)


def find_n_mult(n_ff: int, n_embd: int) -> int:
# hardcoded magic range
for n_mult in range(256, 1, -1):
calc_ff = (((8*n_embd) // 3 + n_mult - 1) // n_mult)*n_mult
if calc_ff == n_ff:
return n_mult
return 1

@dataclass
class Params:
n_vocab: int
n_embd: int
n_mult: int
n_head: int
n_layer: int
file_type: GGMLFileType

@staticmethod
def guessed(model: 'LazyModel', file_type: GGMLFileType) -> 'Params':
n_vocab, n_embd = model["tok_embeddings.weight"].shape
def guessed(model: 'LazyModel') -> 'Params':
# try transformer naming first
n_vocab, n_embd = model["model.embed_tokens.weight"].shape if "model.embed_tokens.weight" in model else model["tok_embeddings.weight"].shape

# try transformer naming first
if "model.layers.0.self_attn.q_proj.weight" in model:
n_layer=next(i for i in itertools.count() if f"model.layers.{i}.self_attn.q_proj.weight" not in model)
else:
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model)

n_head=n_embd // 128 # guessed

return Params(
n_vocab=n_vocab,
n_embd=n_embd,
n_mult=256,
n_head=n_embd // 128,
n_layer=next(i for i in itertools.count() if f"layers.{i}.attention.wq.weight" not in model),
file_type=file_type,
n_head=n_head,
n_layer=n_layer,
)

@staticmethod
def loadHFTransformerJson(model: 'LazyModel', config_path: 'Path') -> 'Params':
config = json.load(open(config_path))

n_vocab = config["vocab_size"];
n_embd = config["hidden_size"];
n_head = config["num_attention_heads"];
n_layer = config["num_hidden_layers"];
n_ff = config["intermediate_size"];

n_mult = find_n_mult(n_ff, n_embd);

return Params(
n_vocab=n_vocab,
n_embd=n_embd,
n_mult=n_mult,
n_head=n_head,
n_layer=n_layer,
)

@staticmethod
def load(model_plus: 'ModelPlus') -> 'Params':
orig_config_path = model_plus.paths[0].parent / "params.json"
hf_transformer_config_path = model_plus.paths[0].parent / "config.json"

if hf_transformer_config_path.exists():
params = Params.loadHFTransformerJson(model_plus.model, hf_transformer_config_path)
else:
params = Params.guessed(model_plus.model)

print(f'params: n_vocab:{params.n_vocab} n_embd:{params.n_embd} n_mult:{params.n_mult} n_head:{params.n_head} n_layer:{params.n_layer}')
return params


class SentencePieceVocab:
def __init__(self, fname_tokenizer: Path, fname_added_tokens: Optional[Path]) -> None:
Expand Down Expand Up @@ -595,18 +643,17 @@ def load() -> Tensor:
return LazyTensor(load, lazy_tensor.shape, lazy_tensor.data_type, f'permute({n_head}) ' + lazy_tensor.description)


def convert_transformers_to_orig(model: LazyModel) -> LazyModel:
def convert_transformers_to_orig(model: LazyModel, params: Params) -> LazyModel:
out: LazyModel = {}
out["tok_embeddings.weight"] = model["model.embed_tokens.weight"]
out["norm.weight"] = model["model.norm.weight"]
out["output.weight"] = model["lm_head.weight"]

n_head = model["model.layers.0.self_attn.q_proj.weight"].shape[1] // 128
for i in itertools.count():
if f"model.layers.{i}.self_attn.q_proj.weight" not in model:
break
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], n_head)
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], n_head)
out[f"layers.{i}.attention.wq.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.q_proj.weight"], params.n_head)
out[f"layers.{i}.attention.wk.weight"] = permute_lazy(model[f"model.layers.{i}.self_attn.k_proj.weight"], params.n_head)
out[f"layers.{i}.attention.wv.weight"] = model[f"model.layers.{i}.self_attn.v_proj.weight"]
out[f"layers.{i}.attention.wo.weight"] = model[f"model.layers.{i}.self_attn.o_proj.weight"]

Expand Down Expand Up @@ -920,7 +967,7 @@ class OutputFile:
def __init__(self, fname_out: Path) -> None:
self.fout = open(fname_out, "wb")

def write_file_header(self, params: Params) -> None:
def write_file_header(self, params: Params, file_type: GGMLFileType) -> None:
self.fout.write(b"ggjt"[::-1]) # magic
values = [
1, # file version
Expand All @@ -930,7 +977,7 @@ def write_file_header(self, params: Params) -> None:
params.n_head,
params.n_layer,
params.n_embd // params.n_head, # rot (obsolete)
params.file_type.value,
file_type.value,
]
self.fout.write(struct.pack("i" * len(values), *values))

Expand Down Expand Up @@ -958,10 +1005,10 @@ def write_vocab_only(fname_out: Path, vocab: Vocab) -> None:
of.fout.close()

@staticmethod
def write_all(fname_out: Path, params: Params, model: LazyModel, vocab: Vocab) -> None:
def write_all(fname_out: Path, params: Params, file_type: GGMLFileType, model: LazyModel, vocab: Vocab) -> None:
check_vocab_size(params, vocab)
of = OutputFile(fname_out)
of.write_file_header(params)
of.write_file_header(params, file_type)
print("Writing vocab...")
of.write_vocab(vocab)

Expand Down Expand Up @@ -997,11 +1044,11 @@ def pick_output_type(model: LazyModel, output_type_str: Optional[str]) -> GGMLFi
raise Exception(f"Unexpected combination of types: {name_to_type}")


def do_necessary_conversions(model: LazyModel) -> LazyModel:
def do_necessary_conversions(model: LazyModel, params: Params) -> LazyModel:
model = handle_quantization(model)

if "lm_head.weight" in model:
model = convert_transformers_to_orig(model)
model = convert_transformers_to_orig(model, params)
model = filter_and_sort_tensors(model)

return model
Expand Down Expand Up @@ -1107,14 +1154,14 @@ def load_vocab(path: Path) -> SentencePieceVocab:
return SentencePieceVocab(path, added_tokens_path if added_tokens_path.exists() else None)


def default_outfile(model_paths: List[Path], params: Params) -> Path:
def default_outfile(model_paths: List[Path], file_type: GGMLFileType) -> Path:
namestr = {
GGMLFileType.AllF32: "f32",
GGMLFileType.MostlyF16: "f16",
GGMLFileType.MostlyQ4_0: "q4_0",
GGMLFileType.MostlyQ4_1: "q4_1",
GGMLFileType.PerLayerIsQ4_1: "q4_1",
}[params.file_type]
}[file_type]
ret = model_paths[0].parent / f"ggml-model-{namestr}.bin"
if ret in model_paths:
sys.stderr.write(
Expand Down Expand Up @@ -1164,13 +1211,13 @@ def main(args_in: Optional[List[str]] = None) -> None:
else:
vocab_dir = args.vocab_dir if args.vocab_dir else model_plus.paths[0].parent
vocab = load_vocab(vocab_dir)
params = Params.load(model_plus)
model = model_plus.model
model = do_necessary_conversions(model)
model = do_necessary_conversions(model, params)
output_type = pick_output_type(model, args.outtype)
model = convert_to_output_type(model, output_type)
params = Params.guessed(model, output_type)
outfile = args.outfile or default_outfile(model_plus.paths, params)
OutputFile.write_all(outfile, params, model, vocab)
outfile = args.outfile or default_outfile(model_plus.paths, output_type)
OutputFile.write_all(outfile, params, output_type, model, vocab)
print(f"Wrote {outfile}")


Expand Down

0 comments on commit 7487137

Please sign in to comment.