Skip to content

Yipeng-Sun/textspotter

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

22 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

An End-to-End TextSpotter with Explicit Alignment and Attention

This is initially described in our CVPR 2018 paper.

Getting Started

Installation

  • Clone the code
git clone https://github.com/tonghe90/textspotter
cd textspotter
# make sure you set WITH_PYTHON_LAYER := 1
# change Makefile.config according to your library path
cp Makefile.config.example Makefile.config
make -j8
make pycaffe
  • install editdistance and pyclipper: pip install editdistance and pip install pyclipper

  • After Caffe is set up, you need to download a trained model (about 40M) from Google Drive. This model is trained with VGG800k and finetuned on ICDAR2015.

  • Run python test.py --img=./imgs/img_105.jpg

  • hyperparameters:

cfg.py --mean_val ==> mean value during the testing.
       --max_len ==> maximum length of the text string (here we take 25, meaning a word can contain 25 characters at most.)
       --recog_th ==> the threshold during the recognition process. The score for a word is the average mean of every character.
       --word_score ==> the threshold for those words that contain number or symbols for they are not contained in the dictionary.

test.py --weight ==> weights file of caffemodel
        --prototxt-iou ==> the prototxt file for detection.
        --prototxt-lstm ==> the prototxt file for recognition.
        --img ==> the folder or img file for testing. The format can be added in ./pylayer/tool is_image function.
        --scales-ms ==> multiscales input for input during the testing process.
        --thresholds-ms ==> corresponding thresholds of text region for multiscale inputs.
        --nms ==> nms threshold for testing
        --save-dir ==> the dir for save results in format of ICDAR2015 submition.

Citation

If you use this code for your research, please cite our papers.

@inproceedings{tong2018,
  title={An End-to-End TextSpotter with Explicit Alignment and Attention},
  author={T. He and Z. Tian and W. Huang and C. Shen and Y. Qiao and C. Sun},
  booktitle={Computer Vision and Pattern Recognition (CVPR), 2018 IEEE Conference on},
  year={2018}
}

License

This code is for NON-COMMERCIAL purposes only. For commerical purposes, please contact Chunhua Shen chhshen@gmail.com. This program is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, version 3. Please refer to http://www.gnu.org/licenses/ for more details.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 56.6%
  • C++ 33.8%
  • Python 4.5%
  • Cuda 2.7%
  • CMake 1.2%
  • MATLAB 0.4%
  • Other 0.8%