Skip to content

Official Repository for "Diffusion HPC: Generate Synthetic Data for Human Mesh Recovery in Challenging Domains" (3DV 2024 Spotlight)

License

Notifications You must be signed in to change notification settings

ZZWENG/Diffusion_HPC

Repository files navigation

Repository for Diffusion HPC: Generate Synthetic Images with Realistic Humans

1. Installation

Tested with Python 3.8 and CUDA 11.3.

conda create -n diffusion_hpc python==3.8
conda activate diffusion_hpc
conda install -y pytorch==1.11.0 torchvision==0.12.0 cudatoolkit=11.3 -c pytorch
pip install -r requirements.txt

# Optional: re-install pyopengl from source if using OSMesa Headless rendering
# pip uninstall pyopengl; git clone https://github.com/mmatl/pyopengl.git; pip install ./pyopengl

2. Prepare model data and datasets

Download model data

Please download VPoser weights (V02_05) and SMPL model weights from their websites and put under ./data.

Note: Only smpl and V02_05 are needed for running demo code. If doing evaluation and downstream experiments, see the step below.

Optional: Download data and model checkpoints.

1. Download models from Google Drive. It contains

  • Finetuned HMR model checkpoints (under checkpoints)
  • EFT fittings for SMART. (under eft_smart)
  • Weghts for finetuned Stable Diffusion (used for Table 2). (under sd_ft_mpii and sd_ft_smart)

2. Download MPII, SMART, and SkiPose.

Download MPII, SMART, and SkiPose datasets and put them under ./data.

Note: MPII and SMART are only needed for running the evaluation code (Table 1 and 2). SMART and SkiPose are needed for running HMR finetuning (Table 3 and 4).

In addition, for pose-conditioned generation on MPII, move EFT fittings for MPII MPII_ver01.json and SMART eft_smart to their respective folder (see below).

File structure should look like the following

- Diffusion_HPC
    - data
        - smpl
        - V02_05
        - SportsCap_Dataset_SMART_v1
            - images
            - annotations
            - eft_smart
        - mpii
            - images
            - annnot
            - MPII_ver01.json
        - ski_3d
            - train
            - test
        - sd_ft_mpii
        - sd_ft_smart
        - checkpoints

3. DiffusionHPC Demo

This script lets you generate several images for a text prompt.

python api.py --text_prompt "a photo of a person doing yoga" --num_images 10 --output_path "./yoga" --use_random_for_d2i

Use --save_mesh to save the meshes.

4. Experiments

Generation quality evaluation. (Table 1 and 2)

1. Text-conditioned generations for MPII (or SMART).

dataset=mpii   # either mpii or smart
text_eval_path=./eval_data
python -m evaluation.${dataset}_quant_eval --save_folder ${text_eval_path}

This could take a long time (6 sec/image), so we recommend parallelizing it over multiple GPUs. For example (with SLURM),

for part_id in {0..10}; do 
    srun --gres=gpu:1 python -m evaluation.${dataset}_quant_eval --num_images 1000 --part_id ${part_id}; 
done

To use the finetuned Stable Diffusion as backbone, add flag --fintuned_on ${dataset}.

2. Pose-condiditioned generations.

dataset=mpii   # either mpii or smart
pose_eval_path=./eval_data
python -m evaluation.${dataset}_gen --use_real --use_text --out_path ${pose_eval_path}

Turn on flags --use_real and/or --use_text for using real image and/or text as guidance. Turn on --finetuned_on ${dataset} for using finetuned Stable Diffusion as backbone. Use --save_mpii to save the real images (for evaluation) at the same time. (Real images will be populated at ${pose_eval_path}/${dataset})

3. Compute metrics.

Example command for computing FID/KID:

gen_name=ours  # could be ours_ft, ours_notext, etc. depending on the flags in the previous step.
python evaluation/compute_metrics.py ${pose_eval_path}/${dataset} ${pose_eval_path}/quant_pose_eval_${dataset}/${gen_name}

Example command for computing H-FID/H-KID:

python evaluation/produce_masks.py ${pose_eval_path}/${dataset}
python evaluation/produce_masks.py ${pose_eval_path}/quant_pose_eval_${dataset}/${gen_name}
python evaluation/compute_metrics.py ${pose_eval_path}/${dataset}_masked ${pose_eval_path}/quant_pose_eval_${dataset}/${gen_name}_masked

Finetune HMR on the generated dataset

Generate synthetic images using real images as guidance.

To generate data for SMART,

ACTION=polevault
python generate_dataset.py --action "an athlete doing gymnastics on a balance beam" --use_real_guide --use_random_latents_for_human --out_path $GEN_PATH --apply_pose_aug --add_blur --real_guidance_action ${ACTION}

To generate data for SkiPose,

ACTION=ski
GEN_PATH=./gen_data/ski_500_rg

python generate_dataset.py --action "skiing" --use_real_guide --use_random_latents_for_human --out_path $GEN_PATH --apply_pose_aug --add_blur --real_guidance_action ${ACTION} --rg_num_samples 500

Convert generated data to the format consumed by SPIN/DAPA.

python downstream_utils/parse_data_from_generated.py --generation_path $GEN_PATH --action $ACTION
python downstream_utils/process_real/parse_from_real.py --action $ACTION

Note: For SkiPose experiments, use --action ski500 if the synthetic dataset was generated with --rg_num_samples 500 in previous step.

The first command above will dump a file named $ACTION_syn_train.npz. The second command will dump two files named $ACTION_real_train.npz, and $ACTION_real_test.npz We will use $ACTION_syn_train.npz and $ACTION_real_train.npz during finetuning, and evaluate on $ACTION_real_test.npz.

Downstream finetuning (Table 3 and 4).

Note, we use wandb for logging, so please type wandb login in command line to log into your account.

Finetuning HMR with the generated images.

First, set up DAPA's environment following their instructions. Then do to the DAPA repo.

cd external/DAPA_release
conda activate dapa

See ./external/DAPA_release/scripts/finetune_demo.sh for example commands for launching SPIN/DAPA/DiffusionHPC finetuning comparisons.

Evaluate finetuned HMR models.

Metrics should be printed to wandb already. Alternatively, use eval_diffusion.py to evaluate a given checkpoint.

For Table 3 experiments, use --eval_type 2d to compute 2D metric. E.g.,

action=polevault   # one of polevault | vault | diving | unevenbars | balancebeam | highjump
python eval_diffusion.py --dataset ${action}_real --checkpoint ../../data/checkpoints/${action}.pt --eval_type 2d

For reference, the following metrics should be printed for the provided checkpoints:

  • polevault: PCK: 77.70425618737436
  • vault: PCK: 66.91005496561053
  • diving: PCK: 79.27329921107761
  • unevenbars: PCK: 44.143125469194544
  • balancebeam: PCK: 85.0919520428191
  • highjump: PCK: 78.13735096862305

For Table 4 experiments, use --eval_type 3d_keypoints to compute 3D metrics. E.g.,

python eval_diffusion.py --dataset ski8481_real --checkpoint ../../data/checkpoints/ski.pt --eval_type 3d_keypoints

For reference, this prints

MPJPE: 111.67059139302978
Reconstruction Error: 81.76326881529707

About

Official Repository for "Diffusion HPC: Generate Synthetic Data for Human Mesh Recovery in Challenging Domains" (3DV 2024 Spotlight)

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages