Implementation of SoundStorm built upon SpeechTokenizer. We employ RVQ-1 of SpeechTokenizer as the semantic tokens described in the paper, using it as a condition to generate tokens for the subsequent RVQ layers.
This repository is a modification of lucidrains/soundstorm-pytorch. While the Conformer implementation remains intact from the original, I've rewritten the SoundStorm model and its training components.
We used two RTX-3090 gpus to train a toy model on LibriSpeech-960. Samples of zero-shot TTS on our demo page. Voice conversion samples and unprompt samples are provided in samples.
Model | Speaker Similarity |
---|---|
VALL-E (our) | 0.7593 |
USLM | 0.8381 |
USLM (SoundStorm) | 0.8827 |
Model | Speaker Similarity |
---|---|
SoundStorm | 0.8985 |
- [9/25] 🔥 We released checkpoint trained on LibriSpeech.
Model | Dataset | Discription |
---|---|---|
soundstorm_speechtokenizer | LibriSpeech | conformer={'dim':1024,'depth': 12,'heads':8, 'dim_head': 128,'attn_flash': False} |
soundstorm-speechtokenizer requires Python>=3.8, and a reasonly recent version of PyTorch. To install soundstorm_speechtokenizer, you can run from this repository:
git clone https://github.com/ZhangXInFD/soundstorm-speechtokenizer.git
cd soundstorm-speechtokenizer
pip install .
import torch, torchaudio
from soundstorm_speechtokenizer import SoundStorm, ConformerWrapper
from speechtokenizer import SpeechTokenizer
from einops import rearrange
conformer = ConformerWrapper(codebook_size=1024,
num_quantizers=7,
conformer={'dim':1024,
'depth': 12,
'heads':8,
'dim_head': 128,
'attn_flash': False
},
)
soundstorm = SoundStorm(net=conformer,
num_semantic_token_ids=1024,
semantic_pad_id=1024,
pad_id=1024,
schedule = 'cosine')
# get your pre-encoded codebook ids from the soundstream from a lot of raw audio
codes = torch.randint(0, 1024, (2, 1024, 7)) # (batch, seq, num RVQ)
# do the below in a loop for a ton of data
loss, acc, generated = soundstorm(codes)
loss.backward()
We provide a trainer to train SoundStorm, which supports both audio input and token sequence input. An example of training is shown in train.py. You should generate a text file that record the files used to train and valid before training. An example used to process LibriSpeech-960 is provided in ls_preprocess.py.
from soundstorm_speechtokenizer import SoundStormTrainer
# Initial parameters with codebooks of SpeechTokenizer
'''
Parameters initialization can significantly speed up the model's training.
'''
sp_params = '/path/SpeechTokenizer.pt'
sp_params = torch.load(sp_params, map_location='cpu')
soundstorm.semantic_token_emb.weight = torch.nn.Parameter(sp_params['quantizer.vq.layers.0._codebook.embed'])
acoustic_embeds = []
for i in range(1, 8):
acoustic_embed = torch.cat([sp_params[f'quantizer.vq.layers.{i}._codebook.embed'], torch.zeros(1,1024)], axis=0)
acoustic_embeds.append(acoustic_embed)
acoustic_embeds = torch.cat(acoustic_embeds, axis=0)
soundstorm.net.code_embeds.weight = torch.nn.Parameter(acoustic_embeds)
# File list used to train and valid
train_file_list = '/path/train_file_list.txt'
with open(train_file_list, 'r') as f:
train_file_list = f.readlines()
valid_file_list = '/path/valid_file_list.txt'
with open(valid_file_list, 'r') as f:
valid_file_list = f.readlines()
result_folder = './Log/result'
# Set input mode
input_mode = 'raw wav'
if input_mode = 'raw wav': # Input raw wav
is_raw_wav = True
is_tokens = False
st_cfg = '/path/config.json'
st_ckpt = '/path/SpeechTokenizer.pt'
tokenizer = SpeechTokenizer.load_from_checkpoint(st_cfg, st_ckpt)
tokenizer.eval()
else: # Input tokens
is_raw_wav = False
is_tokens = True
tokenizer = None
trainer = SoundStormTrainer(model=soundstorm,
num_warmup_steps=4000,
batch_size=8,
epochs=50,
train_file_list=train_file_list,
valid_file_list=valid_file_list,
is_raw_wav=is_raw_wav,
is_tokens=is_tokens,
max_sequence=750,
tokenizer=tokenizer,
lr=6e-4,
initial_lr=3e-5,
grad_accum_every=2,
log_steps=10,
save_model_steps=5000,
results_folder=result_folder,
accelerate_kwargs={
'log_with':"tensorboard",
'project_dir':f'{result_folder}'
},
num_workers=8)
trainer.train()
soundstorm.load('/path/ckpt')
st_cfg = '/path/config.json'
st_ckpt = '/path/SpeechTokenizer.pt'
tokenizer = SpeechTokenizer.load_from_checkpoint(st_cfg, st_ckpt)
# get tokens of prompt
prompt_wav, sr = torchaudio.load('[PROMPT_AUDIO_FILE]')
if sr != tokenizer.sample_rate:
prompt_wav = torchaudio.functional.resample(wav, sr, tokenizer.sample_rate)
prompt_tokens = rearrange(tokenizer.encode(prompt_wav.unsqueeze(0)), 'q b n -> b n q')
'''
We aslo support unprompt mode, just let:
prompt_token = None
'''
semantic_tokens = [[100, 101, 323, ..., 231]] # (b, n)
steps = 1 # Iteration num to generate the first layer (i.e. RVQ-2)
greedy = True # Whether use greedy search in the last generation
generated = soundstorm.generate(semantic_tokens=semantic_tokens,
prompt_tokens=prompt_tokens,
steps=steps,
greedy=greedy)
wavs = tokenizer.decode(rearrange(generated, 'n q -> q b n', b=semantic_tokens.size(0))) # wav: (b, 1, t)
@misc{zhang2023speechtokenizer,
title={SpeechTokenizer: Unified Speech Tokenizer for Speech Language Models},
author={Xin Zhang and Dong Zhang and Shimin Li and Yaqian Zhou and Xipeng Qiu},
year={2023},
eprint={2308.16692},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
We'd like to express our gratitude to the creators of lucidrains/soundstorm-pytorch for their foundational work which made this project possible.
The code in this repository is released under the MIT license as found in the LICENSE file.