We design a spectral compression mapping (SCM) for full-band speech enhancement, and propose a two-stage stream named MHA-DPCRN
soundfile: 0.10.3
librosa: 0.8.1
torch: 3.7.10
numpy: 1.20.3
scipy: 1.7.2
pandas: 1.3.4
tqdm: 4.62.3
- Use Dataset_split.py to split audios to equal-length segments.
- Use Training_csv.py to generate .csv file to pair noise and clean speech
- Use Dataloader.py to create dataset iterater
- Set parameters in Modules.py
- Use Network_Training.py starting training and save checkpoints
- Use Infer.py to enhance noisy speech based on trained checkpoint.