Parity in how back pressure is handled when using the SCS ReactorKafkaBinder and ReactorKafka directly.
If this isn't expected, guidance on how to achieve parity would be appreciated.
Consider two consumer implementations performing identical tasks; a simulation of some work followed by a WebClient call.
max.poll.records=1 for both, to keep things simple.
@EventListener(ApplicationStartedEvent.class)
public Disposable start() {
log.info("Starting receiver");
var client = WebClient.create("http://localhost:9063/actuator/health");
ReceiverOptions<String, String> ro = ReceiverOptions.<String, String>create...// Omitted. See code.
return KafkaReceiver.create(ro)
.receive()
.concatMap(event -> {
log.info("Got an event: {}", event);
pretendWork(1000);
return client.get()
.retrieve()
.bodyToMono(String.class)
.doOnNext(s -> log.info("Result = {}", s))
.doOnSuccess(s -> event.receiverOffset().acknowledge());
}, 1)
.subscribe();
}
@SneakyThrows
private void pretendWork(int ms) {
if (ms > 0) {
log.info("Sleeping for {}ms", ms);
Thread.sleep(ms);
}
}
@Bean
public Function<Flux<Message<String>>, Mono<Void>> test() {
var client = WebClient.create("http://localhost:9063/actuator/health");
return events -> events.concatMap(event -> {
log.info("Got an event: {}", event);
pretendWork(1000);
return client.get()
.retrieve()
.bodyToMono(String.class)
.doOnNext(s -> log.info("Result = {}", s))
.doOnSuccess(s -> event.getHeaders().get(KafkaHeaders.ACKNOWLEDGMENT, ReceiverOffset.class).acknowledge());
}, 1).then();
}
@SneakyThrows
private void pretendWork(int ms) {
if (ms > 0) {
log.info("Sleeping for {}ms", ms);
Thread.sleep(ms);
}
}
In reactor kafka (example 1) we can see behavior in-line with back pressure requirements. One record is emitted at a time. The consumer pauses as necessary.
r.k.r.internals.ConsumerEventLoop : Emitting 1 records, requested now 0
o.a.k.clients.consumer.KafkaConsumer : [Consumer clientId=consumer-test-group-1, groupId=test-group] Committing offsets: {test-1=OffsetAndMetadata{offset=78
r.k.r.internals.ConsumerEventLoop : onRequest.toAdd 1, paused true
r.k.r.internals.ConsumerEventLoop : Consumer woken
In Spring Cloud Streams, using the ReactorKafkaBinder, this isn't the case.
Here, 100's of records are emitted to the sink:
r.k.r.internals.ConsumerEventLoop : Emitting 1 records, requested now 0
r.k.r.internals.ConsumerEventLoop : onRequest.toAdd 1, paused false
r.k.r.internals.ConsumerEventLoop : Emitting 1 records, requested now 0
r.k.r.internals.ConsumerEventLoop : onRequest.toAdd 1, paused false
r.k.r.internals.ConsumerEventLoop : Emitting 1 records, requested now 0
r.k.r.internals.ConsumerEventLoop : onRequest.toAdd 1, paused false
r.k.r.internals.ConsumerEventLoop : Emitting 1 records, requested now 0
r.k.r.internals.ConsumerEventLoop : onRequest.toAdd 1, paused false
r.k.r.internals.ConsumerEventLoop : Emitting 1 records, requested now 0
<snip>
This causes problems if a rebalance occurs during a period of heavy load as the pipeline can contain 100's of pending records.
We'd need to set an intolerably high maxDelayRebalance to get through them all. The net result is quite a lot of duplicate records.
Logs resembling the below are visible.
Rebalancing; waiting for 523 records in pipeline
Presumably something in the binder/channel implementation is causing this?
Requires a Kafka on localhost:9092 and a topic called "test".
Producer
class in test will send 100 messages.demo.reactor.DemoReactorApp
- Pure Reactor Kafka exampledemo.streams.DemoStreamsApplication
- Spring Cloud Streams example
DEBUG logging has been enabled for the ConsumerEventLoop
for emit visibility.
Java 21 Boot 3.2.2 SCS: 4.1.0 Reactor Kafka: 1.3.22
Loosely related issue here.