The second question of 2023 MCM-ICM Problem C
βββ data
βΒ Β βββ df.xlsx # processed data after run features.py
βΒ Β βββ Problem_C_Data_Wordle.xlsx # raw data
βΒ Β βββ unigram_freq.csv # download from https://www.kaggle.com/datasets/rtatman/english-word-frequency
βΒ Β βββ words.json # raw words
βββ 2.py # train & pred
βββ features.py # extract 6 features
βββ find.py # return features
βββ requirements.txt
βββ tries.py # normal distribution curve fit, convert 7 percent features into 2 features
conda create --name hanlp python=3.8
conda activate hanlp
pip install -r requirements.txt
python features.py # features.py use tensorflow
python tries.py
conda deactivate
python 2.py # 2.py use torch