Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix elastic search threading unsafe bug #215

Merged
merged 2 commits into from
Sep 13, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
from typing import Any, Callable, Dict, List, Literal, Optional, Union

import nest_asyncio
import threading
import numpy as np
from llama_index.core.bridge.pydantic import PrivateAttr
from llama_index.core.schema import BaseNode, MetadataMode, TextNode
Expand Down Expand Up @@ -198,10 +199,11 @@ class Config:
text_field: str = "content"
vector_field: str = "embedding"
batch_size: int = 200
embedding_dimension: int = 1536
distance_strategy: Optional[DISTANCE_STRATEGIES] = "COSINE"
retrieval_strategy: AsyncRetrievalStrategy

_store = PrivateAttr()
_local_storage = PrivateAttr()

def __init__(
self,
Expand All @@ -221,40 +223,13 @@ def __init__(
) -> None:
nest_asyncio.apply()

if not es_client:
es_client = get_elasticsearch_client(
url=es_url,
cloud_id=es_cloud_id,
api_key=es_api_key,
username=es_user,
password=es_password,
)
self._local_storage = threading.local()

if retrieval_strategy is None:
retrieval_strategy = AsyncDenseVectorStrategy(
distance=DistanceMetric[distance_strategy]
)

metadata_mappings = {
"document_id": {"type": "keyword"},
"doc_id": {"type": "keyword"},
"ref_doc_id": {"type": "keyword"},
}

self._store = AsyncVectorStore(
user_agent=get_user_agent(),
client=es_client,
index=index_name,
retrieval_strategy=retrieval_strategy,
text_field=text_field,
vector_field=vector_field,
metadata_mappings=metadata_mappings,
num_dimensions=embedding_dimension,
)
asyncio.get_event_loop().run_until_complete(
self._store._create_index_if_not_exists()
)

super().__init__(
index_name=index_name,
es_client=es_client,
Expand All @@ -265,18 +240,53 @@ def __init__(
es_password=es_password,
text_field=text_field,
vector_field=vector_field,
embedding_dimension=embedding_dimension,
batch_size=batch_size,
distance_strategy=distance_strategy,
retrieval_strategy=retrieval_strategy,
)
asyncio.get_event_loop().run_until_complete(
self._get_store()._create_index_if_not_exists()
)

@property
def client(self) -> Any:
"""Get async elasticsearch client."""
return self._store.client
if self.es_client is not None:
return self.es_client

if not hasattr(self._local_storage, "es_client"):
self._local_storage.es_client = get_elasticsearch_client(
url=self.es_url,
cloud_id=self.es_cloud_id,
api_key=self.es_api_key,
username=self.es_user,
password=self.es_password,
)
return self._local_storage.es_client

def _get_store(self, retrieval_strategy=None) -> Any:
metadata_mappings = {
"document_id": {"type": "keyword"},
"doc_id": {"type": "keyword"},
"ref_doc_id": {"type": "keyword"},
}
if not retrieval_strategy:
retrieval_strategy = self.retrieval_strategy

return AsyncVectorStore(
user_agent=get_user_agent(),
client=self.client,
index=self.index_name,
retrieval_strategy=retrieval_strategy,
text_field=self.text_field,
vector_field=self.vector_field,
metadata_mappings=metadata_mappings,
num_dimensions=self.embedding_dimension,
)

def close(self) -> None:
return asyncio.get_event_loop().run_until_complete(self._store.close())
return asyncio.get_event_loop().run_until_complete(self._get_store().close())

def add(
self,
Expand Down Expand Up @@ -345,10 +355,11 @@ async def async_add(
texts.append(node.get_content(metadata_mode=MetadataMode.NONE))
metadatas.append(node_to_metadata_dict(node, remove_text=True))

if not self._store.num_dimensions:
self._store.num_dimensions = len(embeddings[0])
es_store = self._get_store()
if not es_store.num_dimensions:
es_store.num_dimensions = len(embeddings[0])

return await self._store.add_texts(
return await es_store.add_texts(
texts=texts,
metadatas=metadatas,
vectors=embeddings,
Expand Down Expand Up @@ -385,7 +396,8 @@ async def adelete(self, ref_doc_id: str, **delete_kwargs: Any) -> None:
Raises:
Exception: If AsyncElasticsearch delete_by_query fails.
"""
await self._store.delete(
es_store = self._get_store()
await es_store.delete(
query={"term": {"metadata.ref_doc_id": ref_doc_id}}, **delete_kwargs
)

Expand Down Expand Up @@ -463,26 +475,13 @@ async def aquery(
else:
retrieval_strategy = AsyncDenseVectorStrategy()

metadata_mappings = {
"document_id": {"type": "keyword"},
"doc_id": {"type": "keyword"},
"ref_doc_id": {"type": "keyword"},
}
self._store = AsyncVectorStore(
user_agent=get_user_agent(),
client=self.es_client,
index=self.index_name,
retrieval_strategy=retrieval_strategy,
text_field=self.text_field,
vector_field=self.vector_field,
metadata_mappings=metadata_mappings,
)
es_store = self._get_store(retrieval_strategy=retrieval_strategy)

if query.filters is not None and len(query.filters.legacy_filters()) > 0:
filter = [_to_elasticsearch_filter(query.filters)]
else:
filter = es_filter or []
hits = await self._store.search(
hits = await es_store.search(
query=query.query_str,
query_vector=query.query_embedding,
k=query.similarity_top_k,
Expand Down
Loading