- numpy
- pandas
- scipy
- torch
- tqdm
- scikit-learn
-
Download the dataset ARIL from its project.
Download the dataset WiAR from its project.
Download the dataset HTHI from here
-
"git clone" this repository.
-
Datasets ARIL and HTHI do not require processing. Datasets ARIL and HTHI do not require processing,
- unzip WiAR dataset and
cd create_wiar_dataset
- run
python load_data.py
to getcsi_amp_all.mat
- run
python traintestsplit.py <index>
(index
is an int type, indicating the round of random division) - get
TestDataset1.mat
andTrainDataset1.mat
- unzip WiAR dataset and
-
Run bash run.sh (If you want to run Gaussian mode detection, please 'bash run_detection_gaussian.sh')
python train_eval.py --model_name <model_name> --task <task> --dataset_name <dataset_name>
--model_name
: choose betweenunet
,unetpp
andfcn
--task
: choose betweenclassify
,detection
, andsegment
--dataset_name
: choose betweenHTHI
,WiAR
andARIL
Please note that when the dataset_name
is set to HTHI
, the task
parameter can only be set to detection
.
run gaussian_smooth_label.py
If this helps your research, please cite our paper.
@article{wang2023wifiushape,
title={U-Shape Networks are Unified Backbones for Human Action Understanding from Wi-Fi Signals},
author={Wang, Fei and Gao, Yiao and Lan, Bo and Ding, Han and Shi, Jingang and Han, Jinsong},
journal={IEEE Internet of Things Journal},
year={2023},
publisher={IEEE}
}