Skip to content

alanezz/Syllabus-2020-2

Repository files navigation

ING559 - Métodos de Aprendizaje de Máquinas en Data Science

Notas

Si eres alumno del curso puedes encontrar tus notas aquí 😄.

Descripción del curso

Durante el curso el alumno aprenderá el flujo de trabajo que debe seguir un data scientist al involucrarse en un proyecto de Machine Learning. También se espera que el alumno obtenga conocimiento de los modelos y técnicas más famosas del área tanto a nivel teórico como práctico:

  • Desde el punto de vista teórico, el alumno aprenderá la formalización del problema de aprendizaje desde el punto de vista estadístico. Además, el alumno será capaz de entender los fundamentos teóricos de los modelos vistos en este curso.
  • Desde el punto de vista práctico, el curso contempla el estudio de frameworks y liberías ampliamente utilizados en entornos de producción de proyectos de Machine Learning.

Finalmente, también se contempla estudiar técnicas para medir el desempeño de estos algoritmos y optimizar su funcionamiento. Al final del curso el alumno conocerá en qué contexto usar cada uno de los modelos, entendiendo sus ventajas y desventajes. Además podrá desarrollar algunos de estos modelos desde cero.

Evaluaciones

Evaluación Fecha de publicación Contenido
Actividad 00 19 de agosto Introducción a Python
Actividad 01 26 de agosto Pandas y Scikit Learn
Actividad 02 09 de septiembre Clasificación y Naive Bayes
Control 01 16 de septiembre Regresión Lineal, Polinomial y Gradient Descent
Actividad 03 30 de septiembre Regresión Logística
Actividad 04 28 de octubre SVM y Kernels
Control (Bonus) 04 de noviembre Árboles de Decisión
Actividad 05 11 de noviembre Random Forest y Boosting
Actividad (Bonus) 18 de noviembre Reducción de Dimensionalidad y Clustering
Control 02 25 de noviembre Introducción a Redes Neuronales
Actividad 06 02 de diciembre Redes Convolucionales

Foro

La página de Issues se utilizará como foro para preguntas. Notar que las etiquetas ya se encuentran definidas. Este es el único canal oficial para formular preguntas.

Tanto al publicar como comentar, debes atenerte a las normas, que consisten en:

  • Primero revisa las issues, ya que la pregunta que vas a hacer puede haber sido respondida antes.
  • Dar un nombre descriptivo a tu issue. Recuerda que la respuesta a tu duda le puede servir a alguien más, así que un nombre descriptivo es lo más fácil para que tus compañeros sepan que se discutió en cada una.
  • Asignar a tu issue la etiqueta que le corresponde.
  • No mostrar/adjuntar todo tu código, sino del fragmento en el que tienes un problema o duda.
  • Dentro de lo posible, usar Markdown para lo que escribas.

Importante: El equipo docente puede tardar mas de 24 horas en contestar una issue, aunque normalmente el tiempo de respuesta debería ser menor. Por lo mismo, se recomienda no publicar issues el mismo día de alguna entrega.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published