Skip to content

alexdyysp/ESIM-pytorch

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ESIM-pytorch

高校大数据挑战赛(字节跳动)

中国高校计算机大赛--大数据挑战赛(字节跳动)

比赛链接:https://www.kesci.com/home/competition/5cc51043f71088002c5b8840

正式赛题——文本点击率预估(5月26日开赛)

搜索中一个重要的任务是根据query和title预测query下doc点击率,本次大赛参赛队伍需要根据脱敏后的数据预测指定doc的点击率,结果按照指定的评价指标使用在线评测数据进行评测和排名,得分最优者获胜。

比赛数据

列名 内容 样例
query_id int,一个query的唯一标识 1
query 字符string,term空格分割 "字节跳动"
title 字符string,term空格分割 "字节跳动-百科"
label int,取值{0, 1},有点击为1,无点击为0 1

Note: 文本数据是脱敏的,呈现方式是数字序列,所以没有现成子向量文本可用,需要自己重新训练词向量矩阵

比赛评价指标: Qauc

选手提交结果的评估指标是qAUC,qAUC为不同query下AUC的平均值,计算如下: rank

其中AUCi为同一个query_id下的AUC(Area Under Curve)

队伍最终成绩

rank

文件结构

.
├── ESIM
│   ├── data
|   |   ├── checkpoints
│   │   └── train_data.sample
│   ├── esim
│   │   ├── data.py
|   |   ├── utils.py
│   │   ├── layers.py
│   │   └── models.py
│   └── utils.py
|—— 复赛ESIM线下测试版.ipynb
|__ ReadMe.md

:data文件中的train_data.sample数据文件是官方给参赛选手线下调整模型用的样例文件,仅作测试用只有几千case。真实的比赛环境全在和鲸线上,数据量有超过10亿,所以本项目的数据文件仅是参考,模型效果与真实比赛成绩会有不同。

ESIM 模型与结构

  • A. Input encoding

    • a. 双输入query与title, 分别接入embeding层 + BiLSTM。
  • B. Local inference modeling

    • a. soft_align_attention
    • b. local inference
    • c. Enhancement of local inference information
  • C. Inference composition

    • a. 再一次用 BiLSTM 提取上下文信息
    • b. MaxPooling 和 AvgPooling
    • c. 全连接层,输出时经过softmax
  • Key Idea:

    • a. 共享参数到参数交互的进步
    • b. 精细的设计序列式的推断结构。
    • c. 用句子间的注意力机制实现局部推断,并进一步实现全局推断。

复赛实验结果

在比赛中,使用ESIM模型训练query与title对,训练的数据量的增大会带来明显的提升

  • 训练5kw对后,可以得到0.5750
  • 训练1e对后,可以得到0.5850
  • 训练1.5e对后,可以得到0.5880
  • 训练2e对后,可以得到0.5882

PS

小伙伴有什么想问的或者想要的功能接口可以提在issues里

Releases

No releases published

Packages

No packages published