Skip to content

Releases: alibaba/Alink

Alink version 1.6.2

03 Nov 10:32
Compare
Choose a tag to compare

Release version 1.6.2

Alink version 1.6.1

15 Mar 07:27
Compare
Choose a tag to compare

Optimize performance and fixed bugs.

Alink version 1.6.0

08 Nov 08:03
Compare
Choose a tag to compare

Optimize performance and fixed bugs.

Alink version 1.5.8

08 Sep 08:08
Compare
Choose a tag to compare
  1. Add more rules about exception.
  2. Add more graph algorithms.

Alink version 1.5.7

21 Jul 04:22
Compare
Choose a tag to compare
  1. Add pipeline model support in model stream.
  2. Refine online learning.
  3. Fixed some bugs.

Alink version 1.5.6

17 Jun 11:52
Compare
Choose a tag to compare
  1. Add partition in ak, csv and parquet source/sink.
  2. Add model stream as initial model in online learning
  3. Add lazyVizDive and lazyVizStatistics
  4. Add hbase connector
  5. Add custom path in resource plugin

Alink version 1.5.5

10 May 12:56
Compare
Choose a tag to compare
  1. Add datahub catalog.
  2. Add Kernel Dense Estimate
  3. Fixed some bugs

Alink version 1.5.4

22 Apr 10:43
Compare
Choose a tag to compare
  1. Add parquet source
  2. Add Export2FileSinkStreamOp https://www.yuque.com/pinshu/alink_tutorial/book_java_3_2_5
  3. Add Model File Path on predictop and pipeline.
  4. Add TFRecordDataset source/sink
  5. Add ONNX predict operators

Alink version 1.5.3

02 Apr 10:06
Compare
Choose a tag to compare
  1. Add xgboost wrapper using plugin
  2. Add PyTorch model predictor, close #207.
  3. Support pyalink on vvp. https://www.yuque.com/pinshu/alink_tutorial/flink_vvp
  4. Support pyalink on dsw. https://www.yuque.com/pinshu/alink_tutorial/pai_dsw
  5. Support pyalink on pai-designer. https://www.yuque.com/pinshu/alink_tutorial/pai_designer
  6. Add serializer of MTable and Tensor types
  7. Add code of pyalink, close #208.
  8. Fix #199, #193.

Alink version 1.5.2

07 Jan 10:37
aaeb329
Compare
Choose a tag to compare
  1. Improve the performance of model stream.
  2. Add ToTensor, ToVector, ToMTable and support tensor, vector, mtable types in csv source.
  3. Keras sequential operators now support string/int types; Improve plugin mechanism in TF predictor.
  4. Add redis to plugin and add lookup redis operator.
  5. PyAlink: StreamOperator print function now supports specifying port.