Skip to content

alyaxey/catalyst

 
 

Repository files navigation

Catalyst logo

Accelerated DL R&D

CodeFactor Pipi version Docs PyPI Status

Twitter Telegram Slack Github contributors

codestyle catalyst catalyst-cv catalyst-nlp Build Status

PyTorch framework for Deep Learning research and development. It was developed with a focus on reproducibility, fast experimentation and code/ideas reusing. Being able to research/develop something new, rather than write another regular train loop.
Break the cycle - use the Catalyst!

Project manifest. Part of PyTorch Ecosystem. Part of Catalyst Ecosystem:

  • Alchemy - Experiments logging & visualization
  • Catalyst - Accelerated Deep Learning Research and Development
  • Reaction - Convenient Deep Learning models serving

Catalyst at AI Landscape.


Getting started

pip install -U catalyst
import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST
from catalyst.utils import metrics

model = torch.nn.Linear(28 * 28, 10)
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32),
    "valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
}

class CustomRunner(dl.Runner):

    def predict_batch(self, batch):
        # model inference step
        return self.model(batch[0].to(self.device).view(batch[0].size(0), -1))

    def _handle_batch(self, batch):
        # model train/valid step
        x, y = batch
        y_hat = self.model(x.view(x.size(0), -1))

        loss = F.cross_entropy(y_hat, y)
        accuracy01, accuracy03 = metrics.accuracy(y_hat, y, topk=(1, 3))
        self.batch_metrics.update(
            {"loss": loss, "accuracy01": accuracy01, "accuracy03": accuracy03}
        )

        if self.is_train_loader:
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()

runner = CustomRunner()
# model training
runner.train(
    model=model,
    optimizer=optimizer,
    loaders=loaders,
    logdir="./logs",
    num_epochs=5,
    verbose=True,
    load_best_on_end=True,
)
# model inference
for prediction in runner.predict_loader(loader=loaders["valid"]):
    assert prediction.detach().cpu().numpy().shape[-1] == 10
# model tracing
traced_model = runner.trace(loader=loaders["valid"])

Table of Contents

Overview

Catalyst helps you write compact but full-featured Deep Learning pipelines in a few lines of code. You get a training loop with metrics, early-stopping, model checkpointing and other features without the boilerplate.

Installation

Common installation:

pip install -U catalyst
Specific versions with additional requirements

pip install catalyst[ml]         # installs DL+ML based catalyst
pip install catalyst[cv]         # installs DL+CV based catalyst
pip install catalyst[nlp]        # installs DL+NLP based catalyst
pip install catalyst[ecosystem]  # installs Catalyst.Ecosystem
pip install catalyst[contrib]    # installs DL+contrib based catalyst
pip install catalyst[all]        # installs everything
# and master version installation
pip install git+https://github.com/catalyst-team/catalyst@master --upgrade

Catalyst is compatible with: Python 3.6+. PyTorch 1.0.0+.

Minimal Examples

ML - Linear Regression is my profession

import torch
from torch.utils.data import DataLoader, TensorDataset
from catalyst.dl import SupervisedRunner

# data
num_samples, num_features = int(1e4), int(1e1)
X, y = torch.rand(num_samples, num_features), torch.rand(num_samples)
dataset = TensorDataset(X, y)
loader = DataLoader(dataset, batch_size=32, num_workers=1)
loaders = {"train": loader, "valid": loader}

# model, criterion, optimizer, scheduler
model = torch.nn.Linear(num_features, 1)
criterion = torch.nn.MSELoss()
optimizer = torch.optim.Adam(model.parameters())
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

# model training
runner = SupervisedRunner()
runner.train(
    model=model,
    criterion=criterion,
    optimizer=optimizer,
    scheduler=scheduler,
    loaders=loaders,
    logdir="./logdir",
    num_epochs=8,
    verbose=True,
)

CV - MNIST classification one more time

import os
import torch
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST
from catalyst.utils import metrics

model = torch.nn.Linear(28 * 28, 10)
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
    "valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
}

class CustomRunner(dl.Runner):

    def _handle_batch(self, batch):
        x, y = batch
        y_hat = self.model(x.view(x.size(0), -1))

        loss = F.cross_entropy(y_hat, y)
        accuracy01, accuracy03, accuracy05 = metrics.accuracy(y_hat, y, topk=(1, 3, 5))
        self.batch_metrics = {
            "loss": loss,
            "accuracy01": accuracy01,
            "accuracy03": accuracy03,
            "accuracy05": accuracy05,
        }
        
        if self.is_train_loader:
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()

runner = CustomRunner()
runner.train(
    model=model, 
    optimizer=optimizer, 
    loaders=loaders, 
    verbose=True,
)

CV - classification with AutoEncoder

import os
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST
from catalyst.utils import metrics

class ClassifyAE(nn.Module):

    def __init__(self, in_features, hid_features, out_features):
        super().__init__()
        self.encoder = nn.Sequential(nn.Linear(in_features, hid_features), nn.Tanh())
        self.decoder = nn.Sequential(nn.Linear(hid_features, in_features), nn.Sigmoid())
        self.clf = nn.Linear(hid_features, out_features)

    def forward(self, x):
        z = self.encoder(x)
        y_hat = self.clf(z)
        x_ = self.decoder(z)
        return y_hat, x_

model = ClassifyAE(28 * 28, 128, 10)
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
    "valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
}

class CustomRunner(dl.Runner):

    def _handle_batch(self, batch):
        x, y = batch
        x = x.view(x.size(0), -1)
        y_hat, x_ = self.model(x)

        loss_clf = F.cross_entropy(y_hat, y)
        loss_ae = F.mse_loss(x_, x)
        loss = loss_clf + loss_ae
        accuracy01, accuracy03, accuracy05 = metrics.accuracy(y_hat, y, topk=(1, 3, 5))
        self.batch_metrics = {
            "loss_clf": loss_clf,
            "loss_ae": loss_ae,
            "loss": loss,
            "accuracy01": accuracy01,
            "accuracy03": accuracy03,
            "accuracy05": accuracy05,
        }

        if self.is_train_loader:
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()

runner = CustomRunner()
runner.train(
    model=model,
    optimizer=optimizer,
    loaders=loaders,
    verbose=True,
)

CV - classification with Variational AutoEncoder

import os
import numpy as np
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST
from catalyst.utils import metrics

LOG_SCALE_MAX = 2
LOG_SCALE_MIN = -10

def normal_sample(mu, sigma):
    return mu + sigma * torch.randn_like(sigma)

def normal_logprob(mu, sigma, z):
    normalization_constant = (-sigma.log() - 0.5 * np.log(2 * np.pi))
    square_term = -0.5 * ((z - mu) / sigma)**2
    logprob_vec = normalization_constant + square_term
    logprob = logprob_vec.sum(1)
    return logprob

class ClassifyVAE(torch.nn.Module):

    def __init__(self, in_features, hid_features, out_features):
        super().__init__()
        self.encoder = torch.nn.Linear(in_features, hid_features * 2)
        self.decoder = nn.Sequential(nn.Linear(hid_features, in_features), nn.Sigmoid())
        self.clf = torch.nn.Linear(hid_features, out_features)

    def forward(self, x, deterministic=False):
        z = self.encoder(x)
        bs, z_dim = z.shape

        loc, log_scale = z[:, :z_dim // 2], z[:, z_dim // 2:]
        log_scale = torch.clamp(log_scale, LOG_SCALE_MIN, LOG_SCALE_MAX)
        scale = torch.exp(log_scale)
        z_ = loc if deterministic else normal_sample(loc, scale)
        z_logprob = normal_logprob(loc, scale, z_)
        z_ = z_.view(bs, -1)
        x_ = self.decoder(z_)
        y_hat = self.clf(z_)

        return y_hat, x_, z_logprob, loc, log_scale

model = ClassifyVAE(28 * 28, 64, 10)
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
    "valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
}

class CustomRunner(dl.Runner):

    def _handle_batch(self, batch):
        x, y = batch
        x = x.view(x.size(0), -1)
        y_hat, x_, z_logprob, loc, log_scale = self.model(x)

        loss_clf = F.cross_entropy(y_hat, y)
        loss_ae = F.mse_loss(x_, x)
        loss_kld = -0.5 * torch.mean(1 + log_scale - loc.pow(2) - log_scale.exp()) * 0.1
        loss_logprob = torch.mean(z_logprob) * 0.01
        loss = loss_clf + loss_ae + loss_kld + loss_logprob
        accuracy01, accuracy03, accuracy05 = metrics.accuracy(y_hat, y, topk=(1, 3, 5))
        self.batch_metrics = {
            "loss_clf": loss_clf,
            "loss_ae": loss_ae,
            "loss_kld": loss_kld,
            "loss_logprob": loss_logprob,
            "loss": loss,
            "accuracy01": accuracy01,
            "accuracy03": accuracy03,
            "accuracy05": accuracy05,
        }

        if self.is_train_loader:
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()

runner = CustomRunner()
runner.train(
    model=model,
    optimizer=optimizer,
    loaders=loaders,
    verbose=True,
)

CV - segmentation with classification auxiliary task

import os
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST
from catalyst.utils import metrics

class ClassifyUnet(nn.Module):

    def __init__(self, in_channels, in_hw, out_features):
        super().__init__()
        self.encoder = nn.Sequential(nn.Conv2d(in_channels, in_channels, 3, 1, 1), nn.Tanh())
        self.decoder = nn.Conv2d(in_channels, in_channels, 3, 1, 1)
        self.clf = nn.Linear(in_channels * in_hw * in_hw, out_features)

    def forward(self, x):
        z = self.encoder(x)
        z_ = z.view(z.size(0), -1)
        y_hat = self.clf(z_)
        x_ = self.decoder(z)
        return y_hat, x_

model = ClassifyUnet(1, 28, 10)
optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

loaders = {
    "train": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
    "valid": DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=ToTensor()), batch_size=32),
}

class CustomRunner(dl.Runner):

    def _handle_batch(self, batch):
        x, y = batch
        x_noise = (x + torch.rand_like(x)).clamp_(0, 1)
        y_hat, x_ = self.model(x_noise)

        loss_clf = F.cross_entropy(y_hat, y)
        iou = metrics.iou(x_, x)
        loss_iou = 1 - iou
        loss = loss_clf + loss_iou
        accuracy01, accuracy03, accuracy05 = metrics.accuracy(y_hat, y, topk=(1, 3, 5))
        self.batch_metrics = {
            "loss_clf": loss_clf,
            "loss_iou": loss_iou,
            "loss": loss,
            "iou": iou,
            "accuracy01": accuracy01,
            "accuracy03": accuracy03,
            "accuracy05": accuracy05,
        }
        
        if self.is_train_loader:
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()

runner = CustomRunner()
runner.train(
    model=model, 
    optimizer=optimizer, 
    loaders=loaders, 
    verbose=True,
)

GAN - MNIST, flatten version

import os
import torch
from torch import nn
from torch.nn import functional as F
from torch.utils.data import DataLoader
from catalyst import dl
from catalyst.contrib.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST
from catalyst.contrib.nn.modules import Flatten, GlobalMaxPool2d, Lambda

latent_dim = 128
generator = nn.Sequential(
    # We want to generate 128 coefficients to reshape into a 7x7x128 map
    nn.Linear(128, 128 * 7 * 7),
    nn.LeakyReLU(0.2, inplace=True),
    Lambda(lambda x: x.view(x.size(0), 128, 7, 7)),
    nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    nn.ConvTranspose2d(128, 128, (4, 4), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    nn.Conv2d(128, 1, (7, 7), padding=3),
    nn.Sigmoid(),
)
discriminator = nn.Sequential(
    nn.Conv2d(1, 64, (3, 3), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    nn.Conv2d(64, 128, (3, 3), stride=(2, 2), padding=1),
    nn.LeakyReLU(0.2, inplace=True),
    GlobalMaxPool2d(),
    Flatten(),
    nn.Linear(128, 1)
)

model = {"generator": generator, "discriminator": discriminator}
optimizer = {
    "generator": torch.optim.Adam(generator.parameters(), lr=0.0003, betas=(0.5, 0.999)),
    "discriminator": torch.optim.Adam(discriminator.parameters(), lr=0.0003, betas=(0.5, 0.999)),
}
loaders = {
    "train": DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=ToTensor()), batch_size=32),
}

class CustomRunner(dl.Runner):

    def _handle_batch(self, batch):
        real_images, _ = batch
        batch_metrics = {}
        
        # Sample random points in the latent space
        batch_size = real_images.shape[0]
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.device)
        
        # Decode them to fake images
        generated_images = self.model["generator"](random_latent_vectors).detach()
        # Combine them with real images
        combined_images = torch.cat([generated_images, real_images])
        
        # Assemble labels discriminating real from fake images
        labels = torch.cat([
            torch.ones((batch_size, 1)), torch.zeros((batch_size, 1))
        ]).to(self.device)
        # Add random noise to the labels - important trick!
        labels += 0.05 * torch.rand(labels.shape).to(self.device)
        
        # Train the discriminator
        predictions = self.model["discriminator"](combined_images)
        batch_metrics["loss_discriminator"] = \
          F.binary_cross_entropy_with_logits(predictions, labels)
        
        # Sample random points in the latent space
        random_latent_vectors = torch.randn(batch_size, latent_dim).to(self.device)
        # Assemble labels that say "all real images"
        misleading_labels = torch.zeros((batch_size, 1)).to(self.device)
        
        # Train the generator
        generated_images = self.model["generator"](random_latent_vectors)
        predictions = self.model["discriminator"](generated_images)
        batch_metrics["loss_generator"] = \
          F.binary_cross_entropy_with_logits(predictions, misleading_labels)
        
        self.batch_metrics.update(**batch_metrics)

runner = CustomRunner()
runner.train(
    model=model, 
    optimizer=optimizer,
    loaders=loaders,
    callbacks=[
        dl.OptimizerCallback(
            optimizer_key="generator", 
            metric_key="loss_generator"
        ),
        dl.OptimizerCallback(
            optimizer_key="discriminator", 
            metric_key="loss_discriminator"
        ),
    ],
    main_metric="loss_generator",
    num_epochs=20,
    verbose=True,
    logdir="./logs_gan",
)

ML - Linear Regression is my profession (distributed version)

#!/usr/bin/env python
import torch
from torch.utils.data import TensorDataset
from catalyst.dl import SupervisedRunner, utils

def datasets_fn(num_features: int):
    X = torch.rand(int(1e4), num_features)
    y = torch.rand(X.shape[0])
    dataset = TensorDataset(X, y)
    return {"train": dataset, "valid": dataset}

def train():
    num_features = int(1e1)
    # model, criterion, optimizer, scheduler
    model = torch.nn.Linear(num_features, 1)
    criterion = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(model.parameters())
    scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, [3, 6])

    runner = SupervisedRunner()
    runner.train(
        model=model,
        datasets={
            "batch_size": 32,
            "num_workers": 1,
            "get_datasets_fn": datasets_fn,
            "num_features": num_features,  # will be passed to datasets_fn
        },
        criterion=criterion,
        optimizer=optimizer,
        scheduler=scheduler,
        logdir="./logs/example_distributed_ml",
        num_epochs=8,
        verbose=True,
        distributed=False,
    )

utils.distributed_cmd_run(train)

CV - classification with AutoEncoder (distributed version)

#!/usr/bin/env python
import os
import torch
from torch import nn
from torch.nn import functional as F
from catalyst import dl, utils
from catalyst.contrib.data.transforms import ToTensor
from catalyst.contrib.datasets import MNIST
from catalyst.utils import metrics

class ClassifyAE(nn.Module):

    def __init__(self, in_features, hid_features, out_features):
        super().__init__()
        self.encoder = nn.Sequential(nn.Linear(in_features, hid_features), nn.Tanh())
        self.decoder = nn.Linear(hid_features, in_features)
        self.clf = nn.Linear(hid_features, out_features)

    def forward(self, x):
        z = self.encoder(x)
        y_hat = self.clf(z)
        x_ = self.decoder(z)
        return y_hat, x_

class CustomRunner(dl.Runner):

    def _handle_batch(self, batch):
        x, y = batch
        x = x.view(x.size(0), -1)
        y_hat, x_ = self.model(x)

        loss_clf = F.cross_entropy(y_hat, y)
        loss_ae = F.mse_loss(x_, x)
        loss = loss_clf + loss_ae
        accuracy01, accuracy03, accuracy05 = metrics.accuracy(y_hat, y, topk=(1, 3, 5))
        self.batch_metrics = {
            "loss_clf": loss_clf,
            "loss_ae": loss_ae,
            "loss": loss,
            "accuracy01": accuracy01,
            "accuracy03": accuracy03,
            "accuracy05": accuracy05,
        }

        if self.is_train_loader:
            loss.backward()
            self.optimizer.step()
            self.optimizer.zero_grad()

def datasets_fn():
    dataset = MNIST(os.getcwd(), train=False, download=True, transform=ToTensor())
    return {"train": dataset, "valid": dataset}

def train():
    model = ClassifyAE(28 * 28, 128, 10)
    optimizer = torch.optim.Adam(model.parameters(), lr=0.02)

    runner = CustomRunner()
    runner.train(
        model=model,
        optimizer=optimizer,
        datasets={
            "batch_size": 32,
            "num_workers": 1,
            "get_datasets_fn": datasets_fn,
        },
        logdir="./logs/distributed_ae",
        num_epochs=8,
        verbose=True,
    )

utils.distributed_cmd_run(train)

Features

  • Universal train/inference loop.
  • Configuration files for model/data hyperparameters.
  • Reproducibility – all source code and environment variables will be saved.
  • Callbacks – reusable train/inference pipeline parts with easy customization.
  • Training stages support.
  • Deep Learning best practices - SWA, AdamW, Ranger optimizer, OneCycle, and more.
  • Developments best practices - fp16 support, distributed training, slurm support.

Structure

  • core - framework core with main abstractions - Experiment, Runner and Callback.
  • data - useful tools and scripts for data processing.
  • dl – runner for training and inference, all of the classic ML and CV/NLP/RecSys metrics and a variety of callbacks for training, validation and inference of neural networks.
  • tools - extra tools for Deep Learning research, class-based helpers.
  • utils - typical utils for Deep Learning research, function-based helpers.
  • contrib - additional modules contributed by Catalyst users.

Tests

All Catalyst code, features and pipelines are fully tested with our own catalyst-codestyle.

In fact, we train a number of different models for various of tasks - image classification, image segmentation, text classification, GANs training and much more. During the tests, we compare their convergence metrics in order to verify the correctness of the training procedure and its reproducibility.

As a result, Catalyst provides fully tested and reproducible best practices for your deep learning research.

Catalyst

Tutorials

Docs

Guides

Projects

Examples, notebooks and starter kits

Competitions

Paper implementations

Tools and pipelines

Talks and videos

Community

Contribution guide

We appreciate all contributions. If you are planning to contribute back bug-fixes, please do so without any further discussion. If you plan to contribute new features, utility functions or extensions, please first open an issue and discuss the feature with us.

User feedback

We have created catalyst.team.core@gmail.com for "user feedback".

  • If you like the project and want to say thanks, this the right place.
  • If you would like to start a collaboration between your team and Catalyst team to do better Deep Learning R&D - you are always welcome.
  • If you just don't like Github issues and this ways suits you better - feel free to email us.
  • Finally, if you do not like something, please, share it with us and we can see how to improve it.

We appreciate any type of feedback. Thank you!

Acknowledgments

Since the beginning of the development of the Сatalyst, a lot of people have influenced it in a lot of different ways.

Catalyst.Team

Catalyst.Contributors

Catalyst.Friends

Trusted by

Supported by

Citation

Please use this bibtex if you want to cite this repository in your publications:

@misc{catalyst,
    author = {Kolesnikov, Sergey},
    title = {Accelerated DL R&D},
    year = {2018},
    publisher = {GitHub},
    journal = {GitHub repository},
    howpublished = {\url{https://github.com/catalyst-team/catalyst}},
}

Packages

No packages published

Languages

  • Python 92.5%
  • Shell 7.3%
  • Other 0.2%