Skip to content

ampere-openbmc/openbmc

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

OpenBMC

Build Status

OpenBMC is a Linux distribution for management controllers used in devices such as servers, top of rack switches or RAID appliances. It uses Yocto, OpenEmbedded, systemd, and D-Bus to allow easy customization for your platform.

This repository provides early access to Ampere Computing's BMC implementation for Ampere's server platform reference designs. It is the intention to submit all features in this repository to the OpenBMC main project (github/openbmc) in due course.

For open questions and support, please contact support@amperecomputing.com.

Setting up your OpenBMC project

1) Prerequisite

See the Yocto documentation for the latest requirements

Ubuntu

sudo apt install git python3-distutils gcc g++ make file wget \
    gawk diffstat bzip2 cpio chrpath zstd lz4 bzip2

Fedora

sudo dnf install git python3 gcc g++ gawk which bzip2 chrpath cpio \
    hostname file diffutils diffstat lz4 wget zstd rpcgen patch

2) Download the source

git clone https://github.com/ampere-openbmc/openbmc
cd openbmc

3) Target your hardware

Any build requires an environment set up according to your hardware target. There is a special script in the root of this repository that can be used to configure the environment as needed. The script is called setup and takes the name of your hardware target as an argument.

The script needs to be sourced while in the top directory of the OpenBMC repository clone, and, if run without arguments, will display the list of supported hardware targets, see the following example:

$ . setup <machine> [build_dir]
Target machine must be specified. Use one of:

bletchley               mori                    s8036
dl360poc                mtjade                  swift
e3c246d4i               mtmitchell-dcscm        tatlin-archive-x86
ethanolx                nicole                  tiogapass
evb-ast2500             olympus-nuvoton         transformers
evb-ast2600             on5263m5                vegman-n110
evb-npcm750             p10bmc                  vegman-rx20
f0b                     palmetto                vegman-sx20
fp5280g2                qcom-dc-scm-v1          witherspoon
g220a                   quanta-q71l             witherspoon-tacoma
gbs                     romed8hm3               x11spi
greatlakes              romulus                 yosemitev2
gsj                     s2600wf                 zaius
kudo                    s6q
lannister               s7106

Source the setup script and use one of the following for Ampere's platform: mtjade, mtmitchell-dcscm

. setup mtjade

4) Build

bitbake obmc-phosphor-image

On successful build, the BMC image will be located in

tmp

as

obmc-phosphor-image-<platform>.static.mtd
obmc-phosphor-image-<platform>.static.mtd.tar

where <platform> = mtjade or mtmitchell-dcscm

Additional details can be found in the docs repository.

Installing BMC firmware

If there is no firmware pre-installed on the system, you will need to program it to the BMC's SPI NOR using an external SPI programmer like Dediprog using obmc-phosphor-image-.static.mtd.

If a previous version of Ampere's OpenBMC has been installed, perform the following steps to update BMC firmware.

  • Open new Redfish token:
$ export token=`curl -k -H "Content-Type: application/json" -X POST https://${BMC_IP}/login -d '{"username" :  "root", "password" :  "0penBmc"}' | grep token | awk '{print $2;}' | tr -d '"'`
  • Use Redfish UpdateService to flash the BMC firmware
$ curl -k -H "X-Auth-Token: $token" \
       -H "Content-Type: application/octet-stream" \
       -X POST -T ${BMC_FW}.mtd.tar https://${BMC_IP}/redfish/v1/UpdateService
  • Reboot BMC to start the firmware update
$ curl -c cjar -b cjar -k -H "Content-Type: application/json" -X PUT \
       -d '{"data": "xyz.openbmc_project.State.BMC.Transition.Reboot"}' \
        https://root:0penBmc@${BMC_IP}/xyz/openbmc_project/state/bmc0/attr/RequestedBMCTransition`

Installing SCP/SYS firmware to EEPROM

To install SCP or SYS firmware to boot EEPROM, need to copy it (in *.slim or *.bin format) into the BMC via scp from BMC console:

# scp 10.38.12.53:/tftpboot/altra/altra_scp_1.01.20201019.slim /tmp

Installing UEFI firmware

  • Create MANIFEST file with the following content
purpose=xyz.openbmc_project.Software.Version.VersionPurpose.Host
version= jade_tianocore_atf_1.99.20201021.img
KeyType=OpenBMC
HashType=RSA-SHA256
MachineName=mtjade
  • Then create tar file including the firmware image and MANIFEST file:
$ tar -cvf jade_tianocore_atf_1.99.20201021.tar jade_tianocore_atf_1.99.20201021.img MANIFEST
  • Open new Redfish token:
$ export token=`curl -k -H "Content-Type: application/json" -X POST https://${BMC_IP}/login -d '{"username" :  "root", "password" :  "0penBmc"}' | grep token | awk '{print $2;}' | tr -d '"'`
  • Use Redfish UpdateService to flash the UEFI firmware
$ curl -k -H "X-Auth-Token: $token" \
       -H "Content-Type: application/octet-stream" \
       -X POST -T jade_tianocore_atf_1.99.20201021.tar \
        https://${BMC_IP}/redfish/v1/UpdateService

OpenBMC Development

The OpenBMC community maintains a set of tutorials new users can go through to get up to speed on OpenBMC development out here

Build Validation and Testing

Commits submitted by members of the OpenBMC GitHub community are compiled and tested via our Jenkins server. Commits are run through two levels of testing. At the repository level the makefile make check directive is run. At the system level, the commit is built into a firmware image and run with an arm-softmmu QEMU model against a barrage of CI tests.

Commits submitted by non-members do not automatically proceed through CI testing. After visual inspection of the commit, a CI run can be manually performed by the reviewer.

Automated testing against the QEMU model along with supported systems are performed. The OpenBMC project uses the Robot Framework for all automation. Our complete test repository can be found here.

Submitting Patches

Support of additional hardware and software packages is always welcome. Please follow the contributing guidelines when making a submission. It is expected that contributions contain test cases.

Bug Reporting

Issues are managed on GitHub. It is recommended you search through the issues before opening a new one.

Questions

First, please do a search on the internet. There's a good chance your question has already been asked.

For general questions, please use the openbmc tag on Stack Overflow. Please review the discussion on Stack Overflow licensing before posting any code.

For technical discussions, please see contact info below for Discord and mailing list information. Please don't file an issue to ask a question. You'll get faster results by using the mailing list or Discord.

Will OpenBMC run on my Acme Server Corp. XYZ5000 motherboard?

This is a common question, particularly regarding boards from popular COTS (commercial off-the-shelf) vendors such as Supermicro and ASRock. You can see the list of supported boards by running . setup (with no further arguments) in the root of the OpenBMC source tree. Most of the platforms supported by OpenBMC are specialized servers operated by companies running large datacenters, but some more generic COTS servers are supported to varying degrees.

If your motherboard is not listed in the output of . setup it is not currently supported. Porting OpenBMC to a new platform is a non-trivial undertaking, ideally done with the assistance of schematics and other documentation from the manufacturer (it is not completely infeasible to take on a porting effort without documentation via reverse engineering, but it is considerably more difficult, and probably involves a greater risk of hardware damage).

However, even if your motherboard is among those listed in the output of . setup, there are two significant caveats to bear in mind. First, not all ports are equally mature -- some platforms are better supported than others, and functionality on some "supported" boards may be fairly limited. Second, support for a motherboard is not the same as support for a complete system -- in particular, fan control is critically dependent on not just the motherboard but also the fans connected to it and the chassis that the board and fans are housed in, both of which can vary dramatically between systems using the same board model. So while you may be able to compile and install an OpenBMC build on your system and get some basic functionality, rough edges (such as your cooling fans running continuously at full throttle) are likely.

Features of OpenBMC

Feature List

  • Host management: Power, Cooling, LEDs, Inventory, Events, Watchdog
  • Full IPMI 2.0 Compliance with DCMI
  • Code Update Support for multiple BMC/BIOS images
  • Web-based user interface
  • REST interfaces
  • D-Bus based interfaces
  • SSH based SOL
  • Remote KVM
  • Hardware Simulation
  • Automated Testing
  • User management
  • Virtual media

Features In Progress

  • OpenCompute Redfish Compliance
  • Verified Boot

Features Requested but need help

  • OpenBMC performance monitoring

Finding out more

Dive deeper into OpenBMC by opening the docs repository.

Technical Steering Committee

The Technical Steering Committee (TSC) guides the project. Members are:

  • Benjamin Fair, Google
  • Patrick Williams, Meta
  • Roxanne Clarke, IBM
  • Sagar Dharia, Microsoft
  • Samer El-Haj-Mahmoud, Arm
  • Terry Duncan, Intel

Contact

About

Ampere Computing Openbmc

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • BitBake 41.8%
  • Python 34.5%
  • Shell 7.0%
  • HTML 6.7%
  • Roff 4.5%
  • C 2.6%
  • Other 2.9%