-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Added exectuable Pro-GAN training script
- Loading branch information
Antonio Kim
committed
Aug 21, 2020
1 parent
abaa9dd
commit 9ae05c2
Showing
6 changed files
with
713 additions
and
101 deletions.
There are no files selected for viewing
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,19 @@ | ||
# Pro-GAN | ||
|
||
A PyTorch implementation of Pro-GAN as described in [this paper](https://arxiv.org/pdf/1710.10196.pdf). | ||
|
||
Many of the custom layers used in this implementation can be found in the [TorchX](https://github.com/antoniojkim/TorchX) package. | ||
|
||
|
||
|
||
## Training Times | ||
|
||
| Resolution | Total Images shown | Minibatch Size | Time Spent Training | | ||
|------------|--------------------|----------------|---------------------| | ||
| 4x4 | 800,000 | 64 | 670 seconds | | ||
| 8x8 | 1,600,000 | 64 | 2216 seconds | | ||
| 16x16 | 1,600,000 | 64 | 4505 seconds | | ||
| 32x32 | 1,600,000 | 64 | 9442 seconds | | ||
| 64x64 | 1,600,000 | 64 | 2:36:01 + 2:23:39 | | ||
|
||
<!-- ((2 + 2)*60 + 30 + 30) * 60 + 0 + 0 --> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
import torch | ||
import torchvision as torchv | ||
|
||
|
||
class Dataset: | ||
def __init__(self, resolution=64, size=96000): | ||
self.resolution = resolution | ||
self.size = size | ||
|
||
self.HubbleXDF = Image.open("../../data/HubbleXDF_cropped.jpg") | ||
|
||
self.transforms = torchv.transforms.Compose([ | ||
torchv.transforms.RandomCrop((512, 512)), | ||
torchv.transforms.Resize((self.resolution, self.resolution)), | ||
torchv.transforms.ToTensor() | ||
]) | ||
|
||
def __len__(self): | ||
return self.size | ||
|
||
def __getitem__(self, index): | ||
return self.transforms(self.HubbleXDF) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,272 @@ | ||
import torch | ||
import torchx | ||
import numpy as np | ||
|
||
|
||
class Generator(torchx.nn.Module): | ||
def __init__( | ||
self, | ||
num_channels=3, | ||
resolution=4, | ||
fmap_base: int = 2048, | ||
fmap_decay: float = 1.0, | ||
fmap_max: int = 256, | ||
latent_size: int = None, | ||
use_wscale: bool = True, | ||
device: torch.device = None, | ||
): | ||
super().__init__() | ||
|
||
resolution_log2 = int(np.log2(resolution)) | ||
assert resolution >= 4 and resolution == np.exp2(resolution_log2) | ||
|
||
def nf(stage): | ||
return min(int(fmap_base / np.exp2(stage * fmap_decay)), fmap_max) | ||
|
||
if latent_size is None: | ||
latent_size = nf(0) | ||
|
||
self.latent_size = latent_size | ||
self.num_channels = num_channels | ||
self.resolution = resolution | ||
self.resolution_log2 = resolution_log2 | ||
|
||
self.lod_in = 0 | ||
|
||
def upsample2d(factor=2): | ||
assert isinstance(factor, int) and factor >= 1 | ||
|
||
if factor == 1: | ||
return torch.nn.Identity() | ||
|
||
return torch.nn.Upsample(scale_factor=factor) | ||
|
||
def block(res): | ||
if res == 2: # 4x4 | ||
return torch.nn.Sequential( | ||
torchx.nn.View(-1, latent_size, 1, 1), | ||
torchx.nn.PixelwiseNorm(), | ||
torchx.nn.ConvTranspose2d( | ||
latent_size, | ||
nf(res - 1), | ||
4, | ||
1, | ||
gain=np.sqrt(2) / 4, | ||
use_wscale=use_wscale, | ||
), | ||
torch.nn.LeakyReLU(0.2, inplace=True), | ||
torchx.nn.PixelwiseNorm(), | ||
torchx.nn.Conv2d( | ||
nf(res - 1), nf(res - 1), 3, 1, 1, use_wscale=use_wscale | ||
), | ||
torch.nn.LeakyReLU(0.2, inplace=True), | ||
torchx.nn.PixelwiseNorm(), | ||
) | ||
else: # 8x8 and up | ||
return torch.nn.Sequential( | ||
upsample2d(), | ||
torchx.nn.Conv2d( | ||
nf(res - 2), nf(res - 1), 3, 1, 1, use_wscale=use_wscale | ||
), | ||
torch.nn.LeakyReLU(0.2, inplace=True), | ||
torchx.nn.PixelwiseNorm(), | ||
torchx.nn.Conv2d( | ||
nf(res - 1), nf(res - 1), 3, 1, 1, use_wscale=use_wscale | ||
), | ||
torch.nn.LeakyReLU(0.2, inplace=True), | ||
torchx.nn.PixelwiseNorm(), | ||
) | ||
|
||
def torgb(res): # res = 2..resolution_log2 | ||
return torchx.nn.Conv2d( | ||
nf(res - 1), self.num_channels, 1, 1, gain=1, use_wscale=use_wscale | ||
) | ||
|
||
self.blocks = torch.nn.ModuleDict( | ||
{ | ||
f"block_{2**res}x{2**res}": block(res) | ||
for res in range(2, resolution_log2 + 1) | ||
} | ||
) | ||
self.torgb = torch.nn.ModuleDict( | ||
{ | ||
f"torgb_{2**res}x{2**res}": torgb(res) | ||
for res in range(max(resolution_log2 - 1, 2), resolution_log2 + 1) | ||
} | ||
) | ||
|
||
self.block_layers = [ | ||
(name, self.blocks[name]) | ||
for name in ( | ||
f"block_{2**res}x{2**res}" for res in range(2, resolution_log2) | ||
) | ||
] | ||
self.interpolate_layers = [ | ||
self.blocks[f"block_{2**resolution_log2}x{2**resolution_log2}"], | ||
self.torgb[f"torgb_{2**resolution_log2}x{2**resolution_log2}"], | ||
] | ||
if self.resolution_log2 > 2: | ||
self.upsample_layers = [ | ||
self.torgb[f"torgb_{2**(resolution_log2-1)}x{2**(resolution_log2-1)}"], | ||
upsample2d(), | ||
] | ||
|
||
self.device = device | ||
if device is not None: | ||
self.to(device) | ||
|
||
def forward(self, x, alpha=1): | ||
if self.resolution_log2 == 2: | ||
for layer in self.interpolate_layers: | ||
x = layer(x) | ||
else: | ||
for name, block in self.block_layers: | ||
x = block(x) | ||
|
||
if alpha == 0: | ||
for layer in self.upsample_layers: | ||
x = layer(x) | ||
elif alpha == 1: | ||
for layer in self.interpolate_layers: | ||
x = layer(x) | ||
else: | ||
x1 = x | ||
for layer in self.upsample_layers: | ||
x1 = layer(x1) | ||
|
||
x2 = x | ||
for layer in self.interpolate_layers: | ||
x2 = layer(x2) | ||
|
||
x = (1 - alpha) * x1 + alpha * x2 | ||
|
||
return x | ||
|
||
|
||
class Discriminator(torchx.nn.Module): | ||
def __init__( | ||
self, | ||
resolution=4, | ||
fmap_base: int = 2048, | ||
fmap_decay: float = 1.0, | ||
fmap_max: int = 256, | ||
latent_size: int = None, | ||
use_wscale: bool = True, | ||
): | ||
super().__init__() | ||
|
||
resolution_log2 = int(np.log2(resolution)) | ||
assert resolution >= 4 and resolution == np.exp2(resolution_log2) | ||
|
||
self.resolution = resolution | ||
self.resolution_log2 = resolution_log2 | ||
|
||
def nf(stage): | ||
return min(int(fmap_base / np.exp2(stage * fmap_decay)), fmap_max) | ||
|
||
lod_in = 0 | ||
|
||
def downsample2d(factor=2): | ||
assert isinstance(factor, int) and factor >= 1 | ||
|
||
if factor == 1: | ||
return torch.nn.Identity() | ||
|
||
return torch.nn.AvgPool2d(factor, factor) | ||
|
||
def fromrgb(res): # res = 2..resolution_log2 | ||
return torch.nn.Sequential( | ||
torchx.nn.Conv2d(3, nf(res - 1), 1, 1, use_wscale=use_wscale), | ||
torch.nn.LeakyReLU(0.2, inplace=resolution_log2 > 3), | ||
) | ||
|
||
def block(res): | ||
if res >= 3: # 8x8 and up | ||
return torch.nn.Sequential( | ||
torchx.nn.Conv2d( | ||
nf(res - 1), nf(res - 1), 3, 1, 1, use_wscale=use_wscale | ||
), | ||
torch.nn.LeakyReLU(0.2, inplace=True), | ||
torchx.nn.Conv2d( | ||
nf(res - 1), nf(res - 2), 3, 1, 1, use_wscale=use_wscale | ||
), | ||
torch.nn.LeakyReLU(0.2, inplace=True), | ||
downsample2d(), | ||
) | ||
else: # 4x4 | ||
return torch.nn.Sequential( | ||
torchx.nn.MinibatchStddev(), | ||
torchx.nn.Conv2d( | ||
nf(res - 1) + 1, nf(res - 1), 1, 1, use_wscale=use_wscale | ||
), | ||
torch.nn.LeakyReLU(0.2, inplace=True), | ||
torchx.nn.Conv2d( | ||
nf(res - 1), nf(res - 2), 4, 1, use_wscale=use_wscale | ||
), | ||
torch.nn.LeakyReLU(0.2, inplace=True), | ||
torchx.nn.Conv2d( | ||
nf(res - 2), 1, 1, 1, gain=1, use_wscale=use_wscale | ||
), | ||
) | ||
|
||
self.blocks = torch.nn.ModuleDict( | ||
{ | ||
f"block_{2**res}x{2**res}": block(res) | ||
for res in range(2, resolution_log2 + 1) | ||
} | ||
) | ||
self.fromrgb = torch.nn.ModuleDict( | ||
{ | ||
f"fromrgb_{2**res}x{2**res}": fromrgb(res) | ||
for res in range(max(resolution_log2 - 1, 2), resolution_log2 + 1) | ||
} | ||
) | ||
|
||
self.block_layers = [ | ||
(name, self.blocks[name]) | ||
for name in ( | ||
f"block_{2**res}x{2**res}" for res in range(resolution_log2 - 1, 1, -1) | ||
) | ||
] | ||
self.interpolate_layers = [ | ||
self.fromrgb[f"fromrgb_{2**resolution_log2}x{2**resolution_log2}"], | ||
self.blocks[f"block_{2**resolution_log2}x{2**resolution_log2}"], | ||
] | ||
if self.resolution_log2 > 2: | ||
self.downsample_layers = [ | ||
downsample2d(), | ||
self.fromrgb[ | ||
f"fromrgb_{2**(resolution_log2-1)}x{2**(resolution_log2-1)}" | ||
], | ||
] | ||
|
||
self.device = device | ||
if device is not None: | ||
self.to(device) | ||
|
||
def forward(self, x, alpha=1): | ||
if self.resolution_log2 == 2: | ||
for layer in self.interpolate_layers: | ||
x = layer(x) | ||
else: | ||
if alpha == 0: | ||
for layer in self.downsample_layers: | ||
x = layer(x) | ||
elif alpha == 1: | ||
for layer in self.interpolate_layers: | ||
x = layer(x) | ||
else: | ||
x1 = x | ||
for layer in self.downsample_layers: | ||
x1 = layer(x1) | ||
|
||
x2 = x | ||
for layer in self.interpolate_layers: | ||
x2 = layer(x2) | ||
|
||
x = torchx.utils.lerp(x1, x2, alpha) | ||
|
||
for name, block in self.block_layers: | ||
x = block(x) | ||
|
||
return torch.flatten(x, 0) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
resolution: 128 | ||
save_model_path: "../../data/checkpoints" | ||
log_path: "../../data/images" |
Oops, something went wrong.