Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Move Covariance (Sample) covar / covar_samp to be a User Defined Aggregate Function #10372

Merged
merged 7 commits into from
May 6, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions datafusion/core/src/physical_planner.rs
Original file line number Diff line number Diff line change
Expand Up @@ -1901,6 +1901,7 @@ pub fn create_aggregate_expr_with_name_and_maybe_filter(
let ignore_nulls = null_treatment
.unwrap_or(sqlparser::ast::NullTreatment::RespectNulls)
== NullTreatment::IgnoreNulls;

let (agg_expr, filter, order_by) = match func_def {
AggregateFunctionDefinition::BuiltIn(fun) => {
let physical_sort_exprs = match order_by {
Expand Down
11 changes: 1 addition & 10 deletions datafusion/expr/src/aggregate_function.rs
Original file line number Diff line number Diff line change
Expand Up @@ -63,8 +63,6 @@ pub enum AggregateFunction {
Stddev,
/// Standard Deviation (Population)
StddevPop,
/// Covariance (Sample)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

The point of this PR is to remove this variant and make it a user defined aggregate

Covariance,
/// Covariance (Population)
CovariancePop,
/// Correlation
Expand Down Expand Up @@ -128,7 +126,6 @@ impl AggregateFunction {
VariancePop => "VAR_POP",
Stddev => "STDDEV",
StddevPop => "STDDEV_POP",
Covariance => "COVAR",
CovariancePop => "COVAR_POP",
Correlation => "CORR",
RegrSlope => "REGR_SLOPE",
Expand Down Expand Up @@ -184,9 +181,7 @@ impl FromStr for AggregateFunction {
"string_agg" => AggregateFunction::StringAgg,
// statistical
"corr" => AggregateFunction::Correlation,
"covar" => AggregateFunction::Covariance,
"covar_pop" => AggregateFunction::CovariancePop,
"covar_samp" => AggregateFunction::Covariance,
"stddev" => AggregateFunction::Stddev,
"stddev_pop" => AggregateFunction::StddevPop,
"stddev_samp" => AggregateFunction::Stddev,
Expand Down Expand Up @@ -260,9 +255,6 @@ impl AggregateFunction {
AggregateFunction::VariancePop => {
variance_return_type(&coerced_data_types[0])
}
AggregateFunction::Covariance => {
covariance_return_type(&coerced_data_types[0])
}
AggregateFunction::CovariancePop => {
covariance_return_type(&coerced_data_types[0])
}
Expand Down Expand Up @@ -357,8 +349,7 @@ impl AggregateFunction {
Signature::uniform(1, NUMERICS.to_vec(), Volatility::Immutable)
}
AggregateFunction::NthValue => Signature::any(2, Volatility::Immutable),
AggregateFunction::Covariance
| AggregateFunction::CovariancePop
AggregateFunction::CovariancePop
| AggregateFunction::Correlation
| AggregateFunction::RegrSlope
| AggregateFunction::RegrIntercept
Expand Down
2 changes: 1 addition & 1 deletion datafusion/expr/src/type_coercion/aggregates.rs
Original file line number Diff line number Diff line change
Expand Up @@ -183,7 +183,7 @@ pub fn coerce_types(
}
Ok(vec![Float64, Float64])
}
AggregateFunction::Covariance | AggregateFunction::CovariancePop => {
AggregateFunction::CovariancePop => {
if !is_covariance_support_arg_type(&input_types[0]) {
return plan_err!(
"The function {:?} does not support inputs of type {:?}.",
Expand Down
318 changes: 318 additions & 0 deletions datafusion/functions-aggregate/src/covariance.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,318 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

//! [`CovarianceSample`]: covariance sample aggregations.

use std::fmt::Debug;

use arrow::{
array::{ArrayRef, Float64Array, UInt64Array},
compute::kernels::cast,
datatypes::{DataType, Field},
};

use datafusion_common::{
downcast_value, plan_err, unwrap_or_internal_err, DataFusionError, Result,
ScalarValue,
};
use datafusion_expr::{
function::AccumulatorArgs, type_coercion::aggregates::NUMERICS,
utils::format_state_name, Accumulator, AggregateUDFImpl, Signature, Volatility,
};
use datafusion_physical_expr_common::aggregate::stats::StatsType;

make_udaf_expr_and_func!(
CovarianceSample,
covar_samp,
y x,
"Computes the sample covariance.",
covar_samp_udaf
);

pub struct CovarianceSample {
signature: Signature,
aliases: Vec<String>,
}

impl Debug for CovarianceSample {
fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
f.debug_struct("CovarianceSample")
.field("name", &self.name())
.field("signature", &self.signature)
.finish()
}
}

impl Default for CovarianceSample {
fn default() -> Self {
Self::new()
}
}

impl CovarianceSample {
pub fn new() -> Self {
Self {
aliases: vec![String::from("covar")],
signature: Signature::uniform(2, NUMERICS.to_vec(), Volatility::Immutable),
}
}
}

impl AggregateUDFImpl for CovarianceSample {
fn as_any(&self) -> &dyn std::any::Any {
self
}

fn name(&self) -> &str {
"covar_samp"
}

fn signature(&self) -> &Signature {
&self.signature
}

fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
if !arg_types[0].is_numeric() {
return plan_err!("Covariance requires numeric input types");
}

Ok(DataType::Float64)
}

fn state_fields(
&self,
name: &str,
_value_type: DataType,
_ordering_fields: Vec<Field>,
) -> Result<Vec<Field>> {
Ok(vec![
Field::new(format_state_name(name, "count"), DataType::UInt64, true),
Field::new(format_state_name(name, "mean1"), DataType::Float64, true),
Field::new(format_state_name(name, "mean2"), DataType::Float64, true),
Field::new(
format_state_name(name, "algo_const"),
DataType::Float64,
true,
),
])
}

fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
Ok(Box::new(CovarianceAccumulator::try_new(StatsType::Sample)?))
}

fn aliases(&self) -> &[String] {
&self.aliases
}
}

/// An accumulator to compute covariance
/// The algorithm used is an online implementation and numerically stable. It is derived from the following paper
/// for calculating variance:
/// Welford, B. P. (1962). "Note on a method for calculating corrected sums of squares and products".
/// Technometrics. 4 (3): 419–420. doi:10.2307/1266577. JSTOR 1266577.
///
/// The algorithm has been analyzed here:
/// Ling, Robert F. (1974). "Comparison of Several Algorithms for Computing Sample Means and Variances".
/// Journal of the American Statistical Association. 69 (348): 859–866. doi:10.2307/2286154. JSTOR 2286154.
///
/// Though it is not covered in the original paper but is based on the same idea, as a result the algorithm is online,
/// parallelizable and numerically stable.

#[derive(Debug)]
pub struct CovarianceAccumulator {
algo_const: f64,
mean1: f64,
mean2: f64,
count: u64,
stats_type: StatsType,
}

impl CovarianceAccumulator {
/// Creates a new `CovarianceAccumulator`
pub fn try_new(s_type: StatsType) -> Result<Self> {
Ok(Self {
algo_const: 0_f64,
mean1: 0_f64,
mean2: 0_f64,
count: 0_u64,
stats_type: s_type,
})
}

pub fn get_count(&self) -> u64 {
self.count
}

pub fn get_mean1(&self) -> f64 {
self.mean1
}

pub fn get_mean2(&self) -> f64 {
self.mean2
}

pub fn get_algo_const(&self) -> f64 {
self.algo_const
}
}

impl Accumulator for CovarianceAccumulator {
fn state(&mut self) -> Result<Vec<ScalarValue>> {
Ok(vec![
ScalarValue::from(self.count),
ScalarValue::from(self.mean1),
ScalarValue::from(self.mean2),
ScalarValue::from(self.algo_const),
])
}

fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values1 = &cast(&values[0], &DataType::Float64)?;
let values2 = &cast(&values[1], &DataType::Float64)?;

let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten();
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten();

for i in 0..values1.len() {
let value1 = if values1.is_valid(i) {
arr1.next()
} else {
None
};
let value2 = if values2.is_valid(i) {
arr2.next()
} else {
None
};

if value1.is_none() || value2.is_none() {
continue;
}

let value1 = unwrap_or_internal_err!(value1);
let value2 = unwrap_or_internal_err!(value2);
let new_count = self.count + 1;
let delta1 = value1 - self.mean1;
let new_mean1 = delta1 / new_count as f64 + self.mean1;
let delta2 = value2 - self.mean2;
let new_mean2 = delta2 / new_count as f64 + self.mean2;
let new_c = delta1 * (value2 - new_mean2) + self.algo_const;

self.count += 1;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}

Ok(())
}

fn retract_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values1 = &cast(&values[0], &DataType::Float64)?;
let values2 = &cast(&values[1], &DataType::Float64)?;
let mut arr1 = downcast_value!(values1, Float64Array).iter().flatten();
let mut arr2 = downcast_value!(values2, Float64Array).iter().flatten();

for i in 0..values1.len() {
let value1 = if values1.is_valid(i) {
arr1.next()
} else {
None
};
let value2 = if values2.is_valid(i) {
arr2.next()
} else {
None
};

if value1.is_none() || value2.is_none() {
continue;
}

let value1 = unwrap_or_internal_err!(value1);
let value2 = unwrap_or_internal_err!(value2);

let new_count = self.count - 1;
let delta1 = self.mean1 - value1;
let new_mean1 = delta1 / new_count as f64 + self.mean1;
let delta2 = self.mean2 - value2;
let new_mean2 = delta2 / new_count as f64 + self.mean2;
let new_c = self.algo_const - delta1 * (new_mean2 - value2);

self.count -= 1;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}

Ok(())
}

fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
let counts = downcast_value!(states[0], UInt64Array);
let means1 = downcast_value!(states[1], Float64Array);
let means2 = downcast_value!(states[2], Float64Array);
let cs = downcast_value!(states[3], Float64Array);

for i in 0..counts.len() {
let c = counts.value(i);
if c == 0_u64 {
continue;
}
let new_count = self.count + c;
let new_mean1 = self.mean1 * self.count as f64 / new_count as f64
+ means1.value(i) * c as f64 / new_count as f64;
let new_mean2 = self.mean2 * self.count as f64 / new_count as f64
+ means2.value(i) * c as f64 / new_count as f64;
let delta1 = self.mean1 - means1.value(i);
let delta2 = self.mean2 - means2.value(i);
let new_c = self.algo_const
+ cs.value(i)
+ delta1 * delta2 * self.count as f64 * c as f64 / new_count as f64;

self.count = new_count;
self.mean1 = new_mean1;
self.mean2 = new_mean2;
self.algo_const = new_c;
}
Ok(())
}

fn evaluate(&mut self) -> Result<ScalarValue> {
let count = match self.stats_type {
StatsType::Population => self.count,
StatsType::Sample => {
if self.count > 0 {
self.count - 1
} else {
self.count
}
}
};

if count == 0 {
Ok(ScalarValue::Float64(None))
} else {
Ok(ScalarValue::Float64(Some(self.algo_const / count as f64)))
}
}

fn size(&self) -> usize {
std::mem::size_of_val(self)
}
}
4 changes: 2 additions & 2 deletions datafusion/functions-aggregate/src/first_last.rs
Original file line number Diff line number Diff line change
Expand Up @@ -39,12 +39,12 @@ use datafusion_physical_expr_common::expressions;
use datafusion_physical_expr_common::physical_expr::PhysicalExpr;
use datafusion_physical_expr_common::sort_expr::{LexOrdering, PhysicalSortExpr};
use datafusion_physical_expr_common::utils::reverse_order_bys;
use sqlparser::ast::NullTreatment;

use std::any::Any;
use std::fmt::Debug;
use std::sync::Arc;

make_udaf_function!(
make_udaf_expr_and_func!(
FirstValue,
first_value,
"Returns the first value in a group of values.",
Expand Down
Loading