Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add unit-of-least-precision float comparison #13723

Merged
merged 12 commits into from
Sep 14, 2024
4 changes: 3 additions & 1 deletion lucene/CHANGES.txt
Original file line number Diff line number Diff line change
Expand Up @@ -422,7 +422,9 @@ Build

Other
--------------------
(No changes)

* GITHUB#13720: Add float comparison based on unit of least precision and use it to stop test failures caused by float
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Maybe add IEEE 754 float summation implemented by Java not being commutative or so?

Mathematically float summation is fine :)

summation not being associative in IEEE 754. (Alex Herbert, Stefan Vodita)

======================== Lucene 9.11.1 =======================

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -654,7 +654,7 @@ private void assertFloatFacetResultsEqual(List<FacetResult> expected, List<Facet

assertEquals(expectedResult.dim, actualResult.dim);
assertArrayEquals(expectedResult.path, actualResult.path);
assertEquals((float) expectedResult.value, (float) actualResult.value, 2e-1);
assertFloatUlpEquals((float) expectedResult.value, (float) actualResult.value, (short) 2);
assertEquals(expectedResult.childCount, actualResult.childCount);
}
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -864,6 +864,18 @@ public static void assumeNoException(String msg, Exception e) {
RandomizedTest.assumeNoException(msg, e);
}

public static void assertFloatUlpEquals(final float x, final float y, final short maxUlps) {
assertTrue(
x + " and " + y + " are not within " + maxUlps + " ULPs of each other",
TestUtil.floatUlpEquals(x, y, maxUlps));
}

public static void assertDoubleUlpEquals(final double x, final double y, final int maxUlps) {
assertTrue(
x + " and " + y + " are not within " + maxUlps + " ULPs of each other",
TestUtil.doubleUlpEquals(x, y, maxUlps));
}

/**
* Return <code>args</code> as a {@link Set} instance. The order of elements is not preserved in
* iterators.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -464,6 +464,90 @@ private static void checkReaderSanity(LeafReader reader) throws IOException {
}
}

/**
* Returns true if the arguments are equal or within the range of allowed error (inclusive).
* Returns {@code false} if either of the arguments is NaN.
*
* <p>Two float numbers are considered equal if there are {@code (maxUlps - 1)} (or fewer)
* floating point numbers between them, i.e. two adjacent floating point numbers are considered
* equal.
*
* <p>Adapted from org.apache.commons.numbers.core.Precision
*
* <p>github: https://github.com/apache/commons-numbers release 1.2
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point values between {@code x}
* and {@code y}.
* @return {@code true} if there are fewer than {@code maxUlps} floating point values between
* {@code x} and {@code y}.
*/
public static boolean floatUlpEquals(final float x, final float y, final short maxUlps) {
final int xInt = Float.floatToRawIntBits(x);
final int yInt = Float.floatToRawIntBits(y);

if ((xInt ^ yInt) < 0) {
// Numbers have opposite signs, take care of overflow.
// Remove the sign bit to obtain the absolute ULP above zero.
final int deltaPlus = xInt & Integer.MAX_VALUE;
final int deltaMinus = yInt & Integer.MAX_VALUE;

// Note:
// If either value is NaN, the exponent bits are set to (255 << 23) and the
// distance above 0.0 is always above a short ULP error. So omit the test
// for NaN and return directly.

// Avoid possible overflow from adding the deltas by splitting the comparison
return deltaPlus <= maxUlps && deltaMinus <= (maxUlps - deltaPlus);
}

// Numbers have same sign, there is no risk of overflow.
return Math.abs(xInt - yInt) <= maxUlps && !Float.isNaN(x) && !Float.isNaN(y);
}

/**
* Returns true if the arguments are equal or within the range of allowed error (inclusive).
* Returns {@code false} if either of the arguments is NaN.
*
* <p>Two double numbers are considered equal if there are {@code (maxUlps - 1)} (or fewer)
* floating point numbers between them, i.e. two adjacent floating point numbers are considered
* equal.
*
* <p>Adapted from org.apache.commons.numbers.core.Precision
*
* <p>github: https://github.com/apache/commons-numbers release 1.2
*
* @param x first value
* @param y second value
* @param maxUlps {@code (maxUlps - 1)} is the number of floating point values between {@code x}
* and {@code y}.
* @return {@code true} if there are fewer than {@code maxUlps} floating point values between
* {@code x} and {@code y}.
*/
public static boolean doubleUlpEquals(final double x, final double y, final int maxUlps) {
final long xInt = Double.doubleToRawLongBits(x);
final long yInt = Double.doubleToRawLongBits(y);

if ((xInt ^ yInt) < 0) {
// Numbers have opposite signs, take care of overflow.
// Remove the sign bit to obtain the absolute ULP above zero.
final long deltaPlus = xInt & Long.MAX_VALUE;
final long deltaMinus = yInt & Long.MAX_VALUE;

// Note:
// If either value is NaN, the exponent bits are set to (2047L << 52) and the
// distance above 0.0 is always above an integer ULP error. So omit the test
// for NaN and return directly.

// Avoid possible overflow from adding the deltas by splitting the comparison
return deltaPlus <= maxUlps && deltaMinus <= (maxUlps - deltaPlus);
}

// Numbers have same sign, there is no risk of overflow.
return Math.abs(xInt - yInt) <= maxUlps && !Double.isNaN(x) && !Double.isNaN(y);
}

/** start and end are BOTH inclusive */
public static int nextInt(Random r, int start, int end) {
return RandomNumbers.randomIntBetween(r, start, end);
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.lucene.tests.util;

import static org.apache.lucene.tests.util.TestUtil.doubleUlpEquals;
import static org.apache.lucene.tests.util.TestUtil.floatUlpEquals;

/**
* Tests for floating point equality utility methods.
*
* <p>Adapted from org.apache.commons.numbers.core.PrecisionTest
*
* <p>github: https://github.com/apache/commons-numbers release 1.2
*/
public class TestFloatingPointUlpEquality extends LuceneTestCase {
public static void testDoubleEqualsWithAllowedUlps() {
assertTrue(doubleUlpEquals(0.0, -0.0, 1));
assertTrue(doubleUlpEquals(Double.MIN_VALUE, -0.0, 1));
assertFalse(doubleUlpEquals(Double.MIN_VALUE, -Double.MIN_VALUE, 1));

assertTrue(doubleUlpEquals(1.0, 1 + Math.ulp(1d), 1));
assertFalse(doubleUlpEquals(1.0, 1 + 2 * Math.ulp(1d), 1));

for (double value : new double[] {153.0, -128.0, 0.0, 1.0}) {
assertTrue(doubleUlpEquals(value, value, 1));
assertTrue(doubleUlpEquals(value, Math.nextUp(value), 1));
assertFalse(doubleUlpEquals(value, Math.nextUp(Math.nextUp(value)), 1));
assertTrue(doubleUlpEquals(value, Math.nextDown(value), 1));
assertFalse(doubleUlpEquals(value, Math.nextDown(Math.nextDown(value)), 1));
assertFalse(doubleUlpEquals(value, value, -1));
assertFalse(doubleUlpEquals(value, Math.nextUp(value), 0));
assertTrue(doubleUlpEquals(value, Math.nextUp(Math.nextUp(value)), 2));
assertTrue(doubleUlpEquals(value, Math.nextDown(Math.nextDown(value)), 2));
}

assertTrue(doubleUlpEquals(Double.POSITIVE_INFINITY, Double.POSITIVE_INFINITY, 1));
assertTrue(doubleUlpEquals(Double.MAX_VALUE, Double.POSITIVE_INFINITY, 1));

assertTrue(doubleUlpEquals(Double.NEGATIVE_INFINITY, Double.NEGATIVE_INFINITY, 1));
assertTrue(doubleUlpEquals(-Double.MAX_VALUE, Double.NEGATIVE_INFINITY, 1));

assertFalse(doubleUlpEquals(Double.NaN, Double.NaN, 1));
assertFalse(doubleUlpEquals(Double.NaN, Double.NaN, 0));
assertFalse(doubleUlpEquals(Double.NaN, 0, 0));
assertFalse(doubleUlpEquals(0, Double.NaN, 0));
assertFalse(doubleUlpEquals(Double.NaN, Double.POSITIVE_INFINITY, 0));
assertFalse(doubleUlpEquals(Double.NaN, Double.NEGATIVE_INFINITY, 0));

// Create a NaN representation 1 ulp above infinity.
// This hits not equal coverage for binary representations within the ulp but using NaN.
final double nan =
Double.longBitsToDouble(Double.doubleToRawLongBits(Double.POSITIVE_INFINITY) + 1);
assertFalse(doubleUlpEquals(nan, Double.POSITIVE_INFINITY, 1));
assertFalse(doubleUlpEquals(Double.POSITIVE_INFINITY, nan, 1));

assertFalse(
doubleUlpEquals(Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY, Integer.MAX_VALUE));
assertFalse(doubleUlpEquals(0, Double.MAX_VALUE, Integer.MAX_VALUE));
// Here: f == 5.304989477E-315;
// it is used to test the maximum ULP distance between two opposite sign numbers.
final double f = Double.longBitsToDouble(1L << 30);
assertFalse(doubleUlpEquals(-f, f, Integer.MAX_VALUE));
assertTrue(doubleUlpEquals(-f, Math.nextDown(f), Integer.MAX_VALUE));
assertTrue(doubleUlpEquals(Math.nextUp(-f), f, Integer.MAX_VALUE));
// Maximum distance between same sign numbers.
final double f2 = Double.longBitsToDouble((1L << 30) + Integer.MAX_VALUE);
assertTrue(doubleUlpEquals(f, f2, Integer.MAX_VALUE));
assertFalse(doubleUlpEquals(f, Math.nextUp(f2), Integer.MAX_VALUE));
assertFalse(doubleUlpEquals(Math.nextDown(f), f2, Integer.MAX_VALUE));
}

public static void testFloatEqualsWithAllowedUlps() {
assertTrue(floatUlpEquals(0.0f, -0.0f, (short) 1));
assertTrue(floatUlpEquals(Float.MIN_VALUE, -0.0f, (short) 1));
assertFalse(floatUlpEquals(Float.MIN_VALUE, -Float.MIN_VALUE, (short) 1));

assertTrue(floatUlpEquals(1.0f, 1f + Math.ulp(1f), (short) 1));
assertFalse(floatUlpEquals(1.0f, 1f + 2 * Math.ulp(1f), (short) 1));

for (float value : new float[] {153.0f, -128.0f, 0.0f, 1.0f}) {
assertTrue(floatUlpEquals(value, value, (short) 1));
assertTrue(floatUlpEquals(value, Math.nextUp(value), (short) 1));
assertFalse(floatUlpEquals(value, Math.nextUp(Math.nextUp(value)), (short) 1));
assertTrue(floatUlpEquals(value, Math.nextDown(value), (short) 1));
assertFalse(floatUlpEquals(value, Math.nextDown(Math.nextDown(value)), (short) 1));
assertFalse(floatUlpEquals(value, value, (short) -1));
assertFalse(floatUlpEquals(value, Math.nextUp(value), (short) 0));
assertTrue(floatUlpEquals(value, Math.nextUp(Math.nextUp(value)), (short) 2));
assertTrue(floatUlpEquals(value, Math.nextDown(Math.nextDown(value)), (short) 2));
}

assertTrue(floatUlpEquals(Float.POSITIVE_INFINITY, Float.POSITIVE_INFINITY, (short) 1));
assertTrue(floatUlpEquals(Float.MAX_VALUE, Float.POSITIVE_INFINITY, (short) 1));

assertTrue(floatUlpEquals(Float.NEGATIVE_INFINITY, Float.NEGATIVE_INFINITY, (short) 1));
assertTrue(floatUlpEquals(-Float.MAX_VALUE, Float.NEGATIVE_INFINITY, (short) 1));

assertFalse(floatUlpEquals(Float.NaN, Float.NaN, (short) 1));
assertFalse(floatUlpEquals(Float.NaN, Float.NaN, (short) 0));
assertFalse(floatUlpEquals(Float.NaN, 0, (short) 0));
assertFalse(floatUlpEquals(0, Float.NaN, (short) 0));
assertFalse(floatUlpEquals(Float.NaN, Float.POSITIVE_INFINITY, (short) 0));
assertFalse(floatUlpEquals(Float.NaN, Float.NEGATIVE_INFINITY, (short) 0));

assertFalse(floatUlpEquals(Float.NEGATIVE_INFINITY, Float.POSITIVE_INFINITY, (short) 32767));
// The 31-bit integer specification of the max positive ULP allows an extremely
// large range of a 23-bit mantissa and 8-bit exponent
assertTrue(floatUlpEquals(0, Float.MAX_VALUE, (short) 32767));
// Here: f == 2;
// it is used to test the maximum ULP distance between two opposite sign numbers.
final float f = Float.intBitsToFloat(1 << 30);
assertFalse(floatUlpEquals(-f, f, (short) 32767));
assertTrue(floatUlpEquals(-f, Math.nextDown(f), (short) 32767));
assertTrue(floatUlpEquals(Math.nextUp(-f), f, (short) 32767));
// Maximum distance between same sign finite numbers is not possible as the upper
// limit is NaN. Check that it is not equal to anything.
final float f2 = Float.intBitsToFloat(Integer.MAX_VALUE);
assertEquals(Double.NaN, f2, 0);
assertFalse(floatUlpEquals(f2, Float.MAX_VALUE, (short) 32767));
assertFalse(floatUlpEquals(f2, 0, (short) 32767));
}
}