Skip to content
This repository has been archived by the owner on Nov 23, 2022. It is now read-only.

appleparan/mise.py

Repository files navigation

Models

Univariate Statistical Learning Models

  1. OU
  2. ARIMA (might AR)

Univariate Machine Learning Models

  1. MLP
  2. MLP + MCCR Loss
  3. Bahdanau Attention
  4. Bahdanau Attention + MCCR

loss function input for Train/Valid/Test set

  • Train/Valid : Loss between y_hat and y (transformed))
  • Test : Loss between y_hat_inv (inverse transformed) and y_raw

Multivariate Machine Learning Models

  1. XGBoost
  2. MLP
  3. MLP + MCCR
  4. LSTNet (Skip Layer)
  5. LSTNet (Skip Layer) + MCCR
  6. Transformer
  7. Transformer + MCCR

loss function input for Train/Valid/Test set

  • Train/Valid : Loss between y_hat and y (transformed))
  • Test : Loss between y_hat_inv (inverse transformed) and y_raw

Frameworks

  • PyTorch (>= 1.8.0)
  • Optuna (>= 2.3.0)
  • scikit-learn (>= 0.24.0)

Container

  • Run in Singularity (>= 3.6) container generated torch-py3.def
  • Run singularity with following commands
    • bind paths (/input for input, /mnt/data for output)
    • enable nvidia devices by --nv
    • containers refer requirements.txt generated from following command
    $ poetry export -f requirements.txt --output requirements.txt --without-hashes
    
  • Running models in container (singularity) with commands
    TORCH_IMG=my_torch_img.sif
    CASES=rnn_mul_lstnet_skip_mccr
    CASE_NAME=210818_LSTNet_MCCR
    mkdir -p /data/appleparan/"${CASE_NAME}"
    singularity exec --nv --bind "${HOME}"/input:/input:ro,/data/"${CASE_NAME}":/mnt/data:rw ${TORCH_IMG} python3 -m mise --dl ${CASES}
    

Reference

  • LSTNet: arxiv link
    • Lai, Guokun, et al. "Modeling long-and short-term temporal patterns with deep neural networks." The 41st International ACM SIGIR Conference on Research & Development in Information Retrieval. 2018.
  • Transformer: arxiv link
    • Zerveas, George, et al. "A Transformer-based Framework for Multivariate Time Series Representation Learning." arXiv preprint arXiv:2010.02803 (2020).
  • MCCR (Correntropy based Loss): JLMR link
    • Feng, Yunlong, et al. "Learning with the maximum correntropy criterion induced losses for regression." J. Mach. Learn. Res. 16.1 (2015): 993-1034.

Publication

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages