Skip to content
forked from ktye/fft

A better radix-2 fast Fourier transform in Go.

License

Notifications You must be signed in to change notification settings

argusdusty/gofft

 
 

Repository files navigation

gofft GoDoc Build Status Report Card

A better radix-2 fast Fourier transform in Go.

Package gofft provides an efficient radix-2 fast discrete Fourier transformation algorithm in pure Go.

This code is much faster than existing FFT implementations and uses no additional memory.

The algorithm is non-recursive, works in-place overwriting the input array, and requires O(1) additional space.

What

I took an existing FFT implementation in Go, cleaned and improved the code API and performance, and replaced the permutation step with an algorithm that works with no temp array.

Performance was more than doubled over the original code, and is consistently the fastest Go FFT library (see benchmarks below) while remaining in pure Go.

Added convolution functions Convolve(x, y), FastConvolve(x, y), MultiConvolve(x...), FastMultiConvolve(X), which implement the discrete convolution and a new hierarchical convolution algorithm that has utility in a number of CS problems. This computes the convolution of many arrays in $O(n log^2 n)$ run time, and in the case of FastMultiConvolve O(1) additional space.

Also included new utility functions: IsPow2, NextPow2, ZeroPad, ZeroPadToNextPow2, Float64ToComplex128Array, Complex128ToFloat64Array, and RoundFloat64Array

Why

Most existing FFT libraries in Go allocate temporary arrays with O(N) additional space. This is less-than-ideal when you have arrays of length of $2^{25}$ or more, where you quickly end up allocating gigabytes of data and dragging down the FFT calculation to a halt.

Additionally, the new convolution functions have significant utility for projects I've written or am planning.

One downside is that the FFT is not multithreaded (like go-dsp is), so for large vector size FFTs on a multi-core machine it will be slower than it could be. FFTs can be run in parallel, however, so in the case of many FFT calls it will be faster.

How

package main

import (
	"fmt"
	"github.com/argusdusty/gofft"
)

func main() {
	// Do an FFT and IFFT and get the same result
	testArray := gofft.Float64ToComplex128Array([]float64{1, 2, 3, 4, 5, 6, 7, 8})
	err := gofft.FFT(testArray)
	if err != nil {
		panic(err)
	}
	err = gofft.IFFT(testArray)
	if err != nil {
		panic(err)
	}
	result := gofft.Complex128ToFloat64Array(testArray)
	gofft.RoundFloat64Array(result)
	fmt.Println(result)

	// Do a discrete convolution of the testArray with itself
	testArray, err = gofft.Convolve(testArray, testArray)
	if err != nil {
		panic(err)
	}
	result = gofft.Complex128ToFloat64Array(testArray)
	gofft.RoundFloat64Array(result)
	fmt.Println(result)
}

Outputs:

[1 2 3 4 5 6 7 8]
[1 4 10 20 35 56 84 120 147 164 170 164 145 112 64]

Benchmarks

gofft>go test -bench=FFT$ -benchmem -cpu=1 -benchtime=5s
goos: windows
goarch: amd64
pkg: github.com/argusdusty/gofft
cpu: AMD Ryzen 9 5900X 12-Core Processor
Algorithm Size Iterations Time Throughput Memory Allocs
Naive Tiny (4) 43044590 149.1 ns/op 429.29 MB/s 64 B/op 1 allocs/op
Naive Small (128) 31022 199949 ns/op 10.24 MB/s 2048 B/op 1 allocs/op
Naive Medium (4096) 31 190195290 ns/op 0.34 MB/s 65536 B/op 1 allocs/op
ktye Tiny (4) 334951483 16.13 ns/op 3968.29 MB/s 0 B/op 0 allocs/op
ktye Small (128) 5627564 1064 ns/op 1923.91 MB/s 0 B/op 0 allocs/op
ktye Medium (4096) 98692 62663 ns/op 1045.86 MB/s 0 B/op 0 allocs/op
ktye Large (131072) 1436 4210853 ns/op 498.03 MB/s 0 B/op 0 allocs/op
mjibson/go-dsp Tiny (4) 1864420 2882 ns/op 22.21 MB/s 499 B/op 13 allocs/op
mjibson/go-dsp Small (128) 701971 8934 ns/op 229.24 MB/s 5572 B/op 18 allocs/op
mjibson/go-dsp Medium (4096) 33637 149844 ns/op 437.36 MB/s 164358 B/op 23 allocs/op
mjibson/go-dsp Large (131072) 993 6568056 ns/op 319.30 MB/s 5243432 B/op 28 allocs/op
mjibson/go-dsp Huge (4194304) 13 463206769 ns/op 144.88 MB/s 167772795 B/op 33 allocs/op
mjibson/go-dsp Massive (16777216) 3 2478991133 ns/op 108.28 MB/s 671089306 B/op 35 allocs/op
gonum Tiny (4) 123918710 50.12 ns/op 1276.84 MB/s 0 B/op 0 allocs/op
gonum Small (128) 2041134 2904 ns/op 705.33 MB/s 0 B/op 0 allocs/op
gonum Medium (4096) 42642 138597 ns/op 472.85 MB/s 0 B/op 0 allocs/op
gonum Large (131072) 870 6913295 ns/op 303.35 MB/s 0 B/op 0 allocs/op
gonum Huge (4194304) 15 359428827 ns/op 186.71 MB/s 0 B/op 0 allocs/op
gonum Massive (16777216) 4 1407001550 ns/op 190.79 MB/s 0 B/op 0 allocs/op
scientificgo Tiny (4) 66733696 77.52 ns/op 825.58 MB/s 128 B/op 2 allocs/op
scientificgo Small (128) 3675384 1653 ns/op 1238.64 MB/s 4096 B/op 2 allocs/op
scientificgo Medium (4096) 88891 60442 ns/op 1084.28 MB/s 131072 B/op 2 allocs/op
scientificgo Large (131072) 2526 2886025 ns/op 726.66 MB/s 4194304 B/op 2 allocs/op
scientificgo Huge (4194304) 26 228963535 ns/op 293.10 MB/s 134217728 B/op 2 allocs/op
scientificgo Massive (16777216) 4 1312125600 ns/op 204.58 MB/s 536870914 B/op 2 allocs/op
gofft Tiny (4) 1000000000 5.687 ns/op 11253.23 MB/s 0 B/op 0 allocs/op
gofft Small (128) 6283482 1037 ns/op 1974.64 MB/s 0 B/op 0 allocs/op
gofft Medium (4096) 120750 51886 ns/op 1263.07 MB/s 0 B/op 0 allocs/op
gofft Large (131072) 2596 2387875 ns/op 878.25 MB/s 0 B/op 0 allocs/op
gofft Huge (4194304) 27 265444115 ns/op 252.82 MB/s 0 B/op 0 allocs/op
gofft Massive (16777216) 5 1069123500 ns/op 251.08 MB/s 0 B/op 0 allocs/op

About

A better radix-2 fast Fourier transform in Go.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Go 100.0%