forked from ldo/qahirah
-
Notifications
You must be signed in to change notification settings - Fork 1
arjennienhuis/qahirah
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
**Qahirah** is yet another Python language binding for the [Cairo graphics library](http://cairographics.org/), for use with Python 3.3 or later. It is modelled to some extent on [Pycairo](http://cairographics.org/pycairo/), but differs from it in important ways: * It is implemented entirely in Python, using the ctypes module. This offers advantages: automatic support for passing arguments by keyword, and argument names appearing in help() output. * It tries to operate at a higher level than the actual C-centric Cairo API, taking advantage of Python’s powerful data-manipulation facilities. This is explained in more detail below. * Because it is pure Python, the abstractions it implements are “leaky”. As Guido van Rossum has made clear, “We’re all consenting adults here”. If you want to bypass Qahirah’s facilities and make calls directly to the underlying Cairo library, there is nothing to prevent you from doing so. Whether your code will still work with a future version of Qahirah is another matter... Installation ============ Installation is explained in the setup.py script. Overview ======== This introduction will assume you have some knowledge of the Cairo API itself; possibly you have even used the Pycairo Python binding. Qahirah also has “Context”, “Surface” and “Pattern” classes, similar to those in Pycairo. To summarize: * A _Surface_ (underlying Cairo type cairo_surface_t) is a holder for the results of drawing. An _ImageSurface_ is a subclass of Surface that specifically holds a two-dimensional array of pixels (of one of the Cairo-supported formats), but there are other kinds of surfaces for rendering direct to PDF files, SVG files and other purposes. * You do not do drawing directly into a Surface. Instead, you do your drawing into a _Context_ (underlying Cairo type cairo_t). A Context is like a wrapper around a Surface; it holds additional state that can affect subsequent drawing calls (e.g. current position, source pattern, operator), but are not part of the actual contents of the Surface. * A _Pattern_ (underlying Cairo type cairo_pattern_t) defines how pixels are individually affected while drawing. A Pattern can consist of a single plain colour (possibly with transparency), or it can be a linear or radial gradient of colours, or it can even take the image from a Surface. (There are other object types, but understanding these three is, I think, core to understanding how Cairo works.) However, Qahirah introduces some important differences from Pycairo (and from the underlying Cairo API): * Vectors * Properties * Method-chaining * Colours * Rects * Paths * FreeType fonts These are further explained in the sections below. Vectors ======= Qahirah makes heavy use of the *Vector* type. This corresponds to the usual mathematical idea of a 2D vector, with *x* and *y* components. Where Cairo wants you to pass separate *x*- and *y*-coordinate values, Qahirah wants you to pass the two as a single Vector. The reason for this is to reduce repetitiveness of coding: very often, you want to do a calculation for the *x*-coordinate, and then repeat the exact same form of calculation for the *y*-coordinate. The Qahirah Vector type defines addition, subtraction, multiplication and division directly on Vectors in terms of the corresponding operations on their components, allowing you to write your coordinate calculations just once. However, you will still sometimes need to work with separate coordinate values. To ease the job of conversion, all Vector arguments to Qahirah calls can also be written directly as 2-tuples of coordinates, and Vector call results can be directly interpreted as 2-tuples of coordinates. Thus, where the cairo_move_to call takes separate x and y arguments, the Qahirah call works more like this: p = Vector(x, y) ctx.move_to(p) which can of course be written as ctx.move_to(Vector(x, y)) but even more compactly, and closer to the underlying Cairo call, as ctx.move_to((x, y)) Similarly, where cairo_get_current_point returns separate x and y values, Qahirah returns both at once: p = ctx.current_point x = p.x y = p.y which, if you need to separate them out, can also be written more directly as x, y = ctx.current_point The coordinate components of a Vector can be integers or reals. Some uses (e.g. specifying the dimensions of an ImageSurface) require integer coordinates; the builtin Python “round()” function can be used on a Vector to round its coordinates to the nearest corresponding integers, e.g.: >>> v = Vector(3.5, 4.5) >>> round(v) Vector(4, 4) Properties ========== Cairo defines lots of pairs of cairo_get_*property* and cairo_set_*property* calls. Qahirah collapses these down to a single *property* which can be used directly in an expression, or assigned to. For example, instead of cairo_set_source(ctx, pat) you can write ctx.source = pat and instead of pat = cairo_get_source(ctx) you write pat = ctx.source However, the set_*property* versions of the calls are still provided, for use with method-chaining. Method-chaining =============== *Method-chaining* is a technique for reducing repetitiveness when making a series of calls on the same object. This is achieved by having the method calls return the object itself, allowing the immediate application of another method call, and so on. For example, instead of this series of a drawing calls on a Context: ctx.new_path() ctx.move_to(p1) ctx.curve_to(p2, p3, p4) ctx.dash = ((1, 1), 0) ctx.stroke() you can write (ctx .new_path() .move_to(p1) .curve_to(p2, p3, p4) .set_dash((1, 1), 0) .stroke() ) Method-chaining is also available on appropriate methods of Pattern and Surface objects. Colours ======= Qahirah defines a *Colour* type, which takes advantage of the standard Python colorsys module to provide conversions between RGB colour space (the only one supported by Cairo) and HSV, HLS and YIQ colour spaces. You can construct a Colour by specifying components in any of these spaces, and you can retrieve the components in any of these spaces from a Colour. Internally, a Colour always stores R, G, B and alpha components. Where Cairo provides calls to set separate RGB or RGBA colour components, Qahirah does a set of a single Colour value. For convenience, you can directly pass an (R, G, B) or (R, G, B, A) tuple, and it will be automatically converted to a Colour. Correspondingly, where a call returns a Colour, you can convert it directly to an (R, G, B, A) tuple. If you don’t want the alpha value, just append “[:-1]” or “[:3]” to the tuple. Rects ===== Qahirah defines a *Rect* type, which wraps either an underlying cairo_rectangle_int_t or cairo_rectangle_t, depending on whether the coordinates are all integers or not. As with Vectors, the builtin Python “round()” function can be used to convert a Rect to one with all-integer coordinates. Qahirah’s Rect type also defines many useful additional operations. For example, the “transform_to()” method generates a Matrix that maps the area covered by a Rect onto another Rect, which is a very common operation for positioning drawing of figures on a Surface. Paths ===== Cairo defines cairo_path_t and cairo_path_data_t types for holding path data. The only way to create these is to perform path-creation operations into a context, and then use cairo_copy_path or cairo_copy_path_flat to retrieve a copy of the path data. Qahirah instead offers the Path class. While one of these can be created with Context.copy_path or Context.copy_path_flat, you can also construct them yourself from a sequence of Path.Segment objects (directly representing control point geometry) or Path.Element objects (mapping more directly to Cairo path-construction calls). Furthermore, Qahirah allows you to transform a Path through a Matrix, either at drawing time or to produce a new Path. Context.append_path no longer calls cairo_append_path; instead, the Path object directly generates move_to, line_to, curve_to and close_path calls from its elements. FreeType Fonts ============== Qahirah gives access to Cairo’s support for FreeType fonts. It has a built-in minimal FreeType wrapper, but it can also take advantage of the more extensive freetype2 Python module, available from <https://github.com/ldo/python_freetype>. For example, with this module installed, the Path.from_ft_outline method becomes available, for converting a freetype2.Outline to a Path. Other Functional Differences From Pycairo ========================================= Apart from the above differences, Qahirah is not exactly at functional parity with Pycairo. Qahirah implements the following major Cairo features that Pycairo does not: * User fonts * Script surfaces * ScaledFont.text_to_glyphs while it does not handle the GUI-specific surface types that Pycairo does: Win32, XCB and XLib surfaces. Examples ======== Examples of Qahirah in action are available in the following repositories: * [qahirah_examples](https://github.com/ldo/qahirah_examples) * [qahirah_notebooks](https://github.com/ldo/qahirah_notebooks) * [python_pixman_examples](https://github.com/ldo/python_pixman_examples) * [python_freetype_examples](https://github.com/ldo/python_freetype_examples) * [hersheypy](https://github.com/ldo/hersheypy) * [anim_framework_examples](https://github.com/ldo/anim_framework_examples) * [curve](https://github.com/ldo/curve) * [grainypy](https://github.com/ldo/grainypy) Lawrence D'Oliveiro <ldo@geek-central.gen.nz> 2015 November 26
About
Yet another Python binding for the Cairo graphics library
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- Python 100.0%