This project demonstrates the creation of a Retrieval-Augmented Generation (RAG) agent using LangChain. The agent can dynamically determine which actions to take and in what order to achieve a desired outcome.
-
Create and activate a virtual environment using Conda:
conda create --name .venv python=3.10 conda activate .venv
-
Install the necessary Python libraries:
pip install -U langgraph langchain langchain-openai langchainhub langchain-community tavily-python faiss-cpu httpx python-dotenv streamlit
-
Set up API keys in a
.env
file:OPENAI_API_KEY=your_openai_api_key_here SERPAPI_API_KEY=your_serpapi_api_key_here
To start the Streamlit application, run the following command:
streamlit run main.py