Skip to content

Latest commit

 

History

History
28 lines (21 loc) · 856 Bytes

README.md

File metadata and controls

28 lines (21 loc) · 856 Bytes

RAG Agent Project

This project demonstrates the creation of a Retrieval-Augmented Generation (RAG) agent using LangChain. The agent can dynamically determine which actions to take and in what order to achieve a desired outcome.

Setup

  1. Create and activate a virtual environment using Conda:

    conda create --name .venv python=3.10
    conda activate .venv
  2. Install the necessary Python libraries:

    pip install -U langgraph langchain langchain-openai langchainhub langchain-community tavily-python faiss-cpu httpx python-dotenv streamlit
  3. Set up API keys in a .env file:

    OPENAI_API_KEY=your_openai_api_key_here
    SERPAPI_API_KEY=your_serpapi_api_key_here
    

Running the Streamlit App

To start the Streamlit application, run the following command:

streamlit run main.py