Skip to content

A Langchain agent example that searches queries through web, wikipedia, arxive and pdf files

License

Notifications You must be signed in to change notification settings

arkeodev/rag_client

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

RAG Agent Project

This project demonstrates the creation of a Retrieval-Augmented Generation (RAG) agent using LangChain. The agent can dynamically determine which actions to take and in what order to achieve a desired outcome.

Setup

  1. Create and activate a virtual environment using Conda:

    conda create --name .venv python=3.10
    conda activate .venv
  2. Install the necessary Python libraries:

    pip install -U langgraph langchain langchain-openai langchainhub langchain-community tavily-python faiss-cpu httpx python-dotenv streamlit
  3. Set up API keys in a .env file:

    OPENAI_API_KEY=your_openai_api_key_here
    SERPAPI_API_KEY=your_serpapi_api_key_here
    

Running the Streamlit App

To start the Streamlit application, run the following command:

streamlit run main.py

About

A Langchain agent example that searches queries through web, wikipedia, arxive and pdf files

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages