-
Notifications
You must be signed in to change notification settings - Fork 256
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Implement Elligator2 hash-to-curve for Twisted Edwards curves (#659)
* Implement Elligator2 hash to curve for Twisted Edward curves * - Update the pull request number for Elligator2 map in CHANGELOG.md - Fix fmt errors in other parts of the repo. * Remove diagnostic `println`s * Remove irrelevant comment as elligator is not based on pasta Co-authored-by: mmagician <marcin.gorny.94@protonmail.com> * Referencing RFC9380 for hash-to-curve instead of the draft, plus comment clean up. Co-authored-by: mmagician <marcin.gorny.94@protonmail.com> * Cite new reference for hash-to-curve Co-authored-by: mmagician <marcin.gorny.94@protonmail.com> * Make sig0 function of elligator2 map boolean instead of 0u8, 1u8 Co-authored-by: mmagician <marcin.gorny.94@protonmail.com> * Move parity method from `curve_maps::swu` to `curve_maps` as it is used by both swu and elligator. * Remove map-to-curve sanity checks from release build. * cargo fmt * - apply new naming convention for map2curves - rename `new` to `check_parameters` * fix the documentation for `Elligator2Map::check_parameters` * Call elements of the field `element` not `point` in SWU hash-to-curve map * Mention moving of `parity` function in breaking changes. * fmt * move \#659 from pending bto features in `CHANGELOG.md` * bring back `new` and MapToCurve Object. * `cargo fmt` * Move Elligator2 pre-computatable values to `Elligator2Config` * Pre-computatable Elligator2 test example * Move Elligator2 `MapToCurve` implementation to its own folder. * Fix reference to the Elligator paper * Make elligator curve map a static object following revert of revert of #679 * Remove whitespace * Stricter check on SWU parameters Co-authored-by: Marcin <marcin.gorny.94@protonmail.com> --------- Co-authored-by: mmagician <marcin.gorny.94@protonmail.com> Co-authored-by: Pratyush Mishra <pratyushmishra@berkeley.edu> Co-authored-by: Pratyush Mishra <pratyush795@gmail.com>
- Loading branch information
1 parent
9cb911f
commit 30b02b4
Showing
9 changed files
with
339 additions
and
41 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,295 @@ | ||
use crate::models::twisted_edwards::{MontCurveConfig, TECurveConfig}; | ||
use ark_ff::{Field, One, Zero}; | ||
use core::marker::PhantomData; | ||
|
||
use crate::{ | ||
hashing::{curve_maps::parity, map_to_curve_hasher::MapToCurve, HashToCurveError}, | ||
models::twisted_edwards::{Affine, Projective}, | ||
}; | ||
|
||
/// Trait defining the necessary parameters for the Elligator2 hash-to-curve method | ||
/// for twisted edwards curves form of: | ||
/// `b * y² = x³ + a * x² + x` | ||
/// from [\[BHKL13\]], according to [\[HSSWW23\]] | ||
/// | ||
/// - [\[BHKL13\]] <http://dx.doi.org/10.1145/2508859.2516734> | ||
/// - [\[HSSWW23\]] <https://datatracker.ietf.org/doc/html/rfc9380> | ||
pub trait Elligator2Config: TECurveConfig + MontCurveConfig { | ||
/// An element of the base field that is not a square root see \[BHKL13, Section 5\]. | ||
/// When `BaseField` is a prime field, [\[HSSWW23\]] mandates that `Z` is the | ||
/// non-square with lowest absolute value in the `BaseField` when its elements | ||
/// are represented as [-(q-1)/2, (q-1)/2] | ||
const Z: Self::BaseField; | ||
|
||
/// This must be equal to 1/(MontCurveConfig::COEFF_B)^2; | ||
const ONE_OVER_COEFF_B_SQUARE: Self::BaseField; | ||
|
||
/// This must be equal to MontCurveConfig::COEFF_A/MontCurveConfig::COEFF_B; | ||
const COEFF_A_OVER_COEFF_B: Self::BaseField; | ||
} | ||
|
||
/// Represents the Elligator2 hash-to-curve map defined by `P`. | ||
pub struct Elligator2Map<P: TECurveConfig>(PhantomData<fn() -> P>); | ||
|
||
impl<P: Elligator2Config> MapToCurve<Projective<P>> for Elligator2Map<P> { | ||
/// Checks if `P` represents a valid Elligator2 map. Panics otherwise. | ||
fn check_parameters() -> Result<(), HashToCurveError> { | ||
// We assume that the Montgomery curve is correct and as such we do | ||
// not verify the prerequisite for applicability of Elligator2 map to the TECurveConfing. | ||
|
||
// Verifying that Z is a non-square | ||
debug_assert!( | ||
!P::Z.legendre().is_qr(), | ||
"Z should be a quadratic non-residue for the Elligator2 map" | ||
); | ||
|
||
debug_assert_eq!( | ||
P::ONE_OVER_COEFF_B_SQUARE, | ||
<P as MontCurveConfig>::COEFF_B | ||
.square() | ||
.inverse() | ||
.expect("B coefficient cannot be zero in Montgomery form"), | ||
"ONE_OVER_COEFF_B_SQUARE is not equal to 1/COEFF_B^2 in Montgomery form" | ||
); | ||
|
||
debug_assert_eq!( | ||
P::COEFF_A_OVER_COEFF_B, | ||
<P as MontCurveConfig>::COEFF_A / <P as MontCurveConfig>::COEFF_B, | ||
"COEFF_A_OVER_COEFF_B is not equal to COEFF_A/COEFF_B in Montgomery form" | ||
); | ||
Ok(()) | ||
} | ||
|
||
/// Map an arbitrary base field element `element` to a curve point. | ||
fn map_to_curve(element: P::BaseField) -> Result<Affine<P>, HashToCurveError> { | ||
// 1. x1 = -(J / K) * inv0(1 + Z * u^2) | ||
// 2. If x1 == 0, set x1 = -(J / K) | ||
// 3. gx1 = x1^3 + (J / K) * x1^2 + x1 / K^2 | ||
// 4. x2 = -x1 - (J / K) | ||
// 5. gx2 = x2^3 + (J / K) * x2^2 + x2 / K^2 | ||
// 6. If is_square(gx1), set x = x1, y = sqrt(gx1) with sgn0(y) == 1. | ||
// 7. Else set x = x2, y = sqrt(gx2) with sgn0(y) == 0. | ||
// 8. s = x * K | ||
// 9. t = y * K | ||
// 10. return (s, t) | ||
|
||
// ark a is irtf J | ||
// ark b is irtf k | ||
let k = <P as MontCurveConfig>::COEFF_B; | ||
let j_on_k = P::COEFF_A_OVER_COEFF_B; | ||
let ksq_inv = P::ONE_OVER_COEFF_B_SQUARE; | ||
|
||
let den_1 = <P::BaseField as One>::one() + P::Z * element.square(); | ||
|
||
let x1 = -j_on_k | ||
/ (if den_1.is_zero() { | ||
<P::BaseField as One>::one() | ||
} else { | ||
den_1 | ||
}); | ||
let x1sq = x1.square(); | ||
let x1cb = x1sq * x1; | ||
let gx1 = x1cb + j_on_k * x1sq + x1 * ksq_inv; | ||
|
||
let x2 = -x1 - j_on_k; | ||
let x2sq = x2.square(); | ||
let x2cb = x2sq * x2; | ||
let gx2 = x2cb + j_on_k * x2sq + x2 * ksq_inv; | ||
|
||
let (x, mut y, sgn0) = if gx1.legendre().is_qr() { | ||
( | ||
x1, | ||
gx1.sqrt() | ||
.expect("We have checked that gx1 is a quadratic residue. Q.E.D"), | ||
true, | ||
) | ||
} else { | ||
( | ||
x2, | ||
gx2.sqrt() | ||
.expect("gx2 is a quadratic residue because gx1 is not. Q.E.D"), | ||
false, | ||
) | ||
}; | ||
|
||
if parity(&y) != sgn0 { | ||
y = -y; | ||
} | ||
|
||
let s = x * k; | ||
let t = y * k; | ||
|
||
// `(s, t)` is an affine point on the Montgomery curve. | ||
// Ideally, the TECurve would come with a mapping to its Montgomery curve, | ||
// so we could just call that mapping here. | ||
// This is currently not supported in arkworks, so | ||
// we just implement the rational map here from [\[HSSWW23\]] Appendix D | ||
|
||
let tv1 = s + <P::BaseField as One>::one(); | ||
let tv2 = tv1 * t; | ||
let (v, w) = if tv2.is_zero() { | ||
(<P::BaseField as Zero>::zero(), <P::BaseField as One>::one()) | ||
} else { | ||
let tv2_inv = tv2 | ||
.inverse() | ||
.expect("None zero element has inverse. Q.E.D."); | ||
let v = tv2_inv * tv1 * s; | ||
let w = tv2_inv * t * (s - <P::BaseField as One>::one()); | ||
(v, w) | ||
}; | ||
|
||
let point_on_curve = Affine::<P>::new_unchecked(v, w); | ||
debug_assert!( | ||
point_on_curve.is_on_curve(), | ||
"Elligator2 mapped to a point off the curve" | ||
); | ||
Ok(point_on_curve) | ||
} | ||
} | ||
|
||
#[cfg(test)] | ||
mod test { | ||
use crate::{ | ||
hashing::{map_to_curve_hasher::MapToCurveBasedHasher, HashToCurve}, | ||
CurveConfig, | ||
}; | ||
use ark_ff::field_hashers::DefaultFieldHasher; | ||
use ark_std::vec::Vec; | ||
|
||
use super::*; | ||
use ark_ff::{fields::Fp64, MontBackend, MontFp}; | ||
use hashbrown::HashMap; | ||
use sha2::Sha256; | ||
|
||
#[derive(ark_ff::MontConfig)] | ||
#[modulus = "101"] | ||
#[generator = "2"] | ||
pub struct F101Config; | ||
pub type F101 = Fp64<MontBackend<F101Config, 1>>; | ||
|
||
#[derive(ark_ff::MontConfig)] | ||
#[modulus = "11"] | ||
#[generator = "2"] | ||
pub struct F11Config; | ||
pub type F11 = Fp64<MontBackend<F11Config, 1>>; | ||
|
||
struct TestElligator2MapToCurveConfig; | ||
|
||
impl CurveConfig for TestElligator2MapToCurveConfig { | ||
const COFACTOR: &'static [u64] = &[8]; | ||
|
||
#[rustfmt::skip] | ||
const COFACTOR_INV: F11 = MontFp!("7"); | ||
|
||
type BaseField = F101; | ||
type ScalarField = F11; | ||
} | ||
|
||
/// sage: EnsureValidEdwards(F101,-1,12) | ||
/// sage: Curve_EdwardsToMontgomery(F101, -1, 12) | ||
/// (76, 23) | ||
/// sage: Curve_EdwardsToWeierstrass(F101, -1, 12) | ||
/// (11, 5) | ||
/// sage: EllipticCurve(F101,[11,5]) | ||
/// Elliptic Curve defined by y^2 = x^3 + 11*x + 5 over Finite Field of size 101 | ||
/// sage: EW = EllipticCurve(F101,[11,5]) | ||
/// sage: EW.order().factor() | ||
/// 2^3 * 11 | ||
/// sage: EW = EdwardsCurve(F101,-1,12) | ||
/// sage: EW.gens()[0] * 8 | ||
/// (5 : 36 : 1) | ||
/// Point_WeierstrassToEdwards(F101, 11, 5, F101(5), F101(36), a_given=-1, d_given=12) | ||
/// (23, 24) | ||
impl TECurveConfig for TestElligator2MapToCurveConfig { | ||
/// COEFF_A = -1 | ||
const COEFF_A: F101 = MontFp!("-1"); | ||
|
||
/// COEFF_D = 12 | ||
const COEFF_D: F101 = MontFp!("12"); | ||
|
||
const GENERATOR: Affine<TestElligator2MapToCurveConfig> = | ||
Affine::<TestElligator2MapToCurveConfig>::new_unchecked(MontFp!("23"), MontFp!("24")); | ||
|
||
type MontCurveConfig = TestElligator2MapToCurveConfig; | ||
} | ||
|
||
impl MontCurveConfig for TestElligator2MapToCurveConfig { | ||
/// COEFF_A = 76 | ||
const COEFF_A: F101 = MontFp!("76"); | ||
|
||
/// COEFF_B = 23 | ||
const COEFF_B: F101 = MontFp!("23"); | ||
|
||
type TECurveConfig = TestElligator2MapToCurveConfig; | ||
} | ||
|
||
/// sage: find_z_ell2(F101) | ||
/// 2 | ||
/// sage: F101 = FiniteField(101) | ||
/// sage: 1/F101("23")^2 | ||
/// 80 | ||
/// sage: F101("76")/F101("23") | ||
/// 56 | ||
impl Elligator2Config for TestElligator2MapToCurveConfig { | ||
const Z: F101 = MontFp!("2"); | ||
const ONE_OVER_COEFF_B_SQUARE: F101 = MontFp!("80"); | ||
|
||
const COEFF_A_OVER_COEFF_B: F101 = MontFp!("56"); | ||
} | ||
|
||
/// The point of the test is to get a simple twisted edwards curve and make | ||
/// simple hash | ||
#[test] | ||
fn hash_arbitary_string_to_curve_elligator2() { | ||
let test_elligator2_to_curve_hasher = MapToCurveBasedHasher::< | ||
Projective<TestElligator2MapToCurveConfig>, | ||
DefaultFieldHasher<Sha256, 128>, | ||
Elligator2Map<TestElligator2MapToCurveConfig>, | ||
>::new(&[1]) | ||
.unwrap(); | ||
|
||
let hash_result = test_elligator2_to_curve_hasher.hash(b"if you stick a Babel fish in your ear you can instantly understand anything said to you in any form of language.").expect("fail to hash the string to curve"); | ||
|
||
assert!( | ||
hash_result.is_on_curve(), | ||
"hash results into a point off the curve" | ||
); | ||
} | ||
|
||
/// Use a simple twisted edwards curve and map the whole field to it. We observe | ||
/// the map behaviour. Specifically, the map should be non-constant, all | ||
/// elements should be mapped to curve successfully. everything can be mapped | ||
#[test] | ||
fn map_field_to_curve_elligator2() { | ||
Elligator2Map::<TestElligator2MapToCurveConfig>::check_parameters().unwrap(); | ||
|
||
let mut map_range: Vec<Affine<TestElligator2MapToCurveConfig>> = vec![]; | ||
// We are mapping all elemnts of the field to the curve, verifying that | ||
// map is not constant on that set. | ||
for current_field_element in 0..101 { | ||
map_range.push( | ||
Elligator2Map::<TestElligator2MapToCurveConfig>::map_to_curve(F101::from( | ||
current_field_element as u64, | ||
)) | ||
.unwrap(), | ||
); | ||
} | ||
|
||
let mut counts = HashMap::new(); | ||
|
||
let mode = map_range | ||
.iter() | ||
.copied() | ||
.max_by_key(|&n| { | ||
let count = counts.entry(n).or_insert(0); | ||
*count += 1; | ||
*count | ||
}) | ||
.unwrap(); | ||
|
||
assert!( | ||
*counts.get(&mode).unwrap() != 101, | ||
"a constant hash function is not good." | ||
); | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,14 @@ | ||
use ark_ff::{BigInteger, Field, PrimeField, Zero}; | ||
pub mod elligator2; | ||
pub mod swu; | ||
pub mod wb; | ||
|
||
//// parity method on the Field elements based on [\[1\]] Section 4.1 | ||
//// which is used by multiple curve maps including Elligator2 and SWU | ||
/// - [\[1\]] <https://datatracker.ietf.org/doc/html/rfc9380/> | ||
pub fn parity<F: Field>(element: &F) -> bool { | ||
element | ||
.to_base_prime_field_elements() | ||
.find(|&x| !x.is_zero()) | ||
.map_or(false, |x| x.into_bigint().is_odd()) | ||
} |
Oops, something went wrong.