forked from langchain-ai/langchain
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
commit fe30be6 Author: Ankush Gola <9536492+agola11@users.noreply.github.com> Date: Wed Mar 1 21:55:43 2023 -0800 add async and streaming support to `OpenAIChat` (langchain-ai#1378) title says it all commit cfed049 Author: Lakshya Agarwal <lakshyajannu@gmail.com> Date: Thu Mar 2 10:48:09 2023 +0530 Minor grammatical fixes (langchain-ai#1325) Fixed typos and links in a few places across documents commit 59157b6 Author: Ryan Dao <daoduyducduong@gmail.com> Date: Wed Mar 1 21:15:27 2023 -0800 Bug: Fix Python version validation in PythonAstREPLTool (langchain-ai#1373) The current logic checks if the Python major version is < 8, which is wrong. This checks if the major and minor version is < 3.9. commit e178008 Author: Harrison Chase <hw.chase.17@gmail.com> Date: Wed Mar 1 21:15:13 2023 -0800 Harrison/track token usage (langchain-ai#1382) Co-authored-by: Zak King <zaking17@gmail.com> commit 1cd8996 Author: Harrison Chase <hw.chase.17@gmail.com> Date: Wed Mar 1 20:59:07 2023 -0800 Harrison/summarizer chain (langchain-ai#1356) Co-authored-by: Tim Asp <707699+timothyasp@users.noreply.github.com> commit cfae030 Author: yakigac <10434946+yakigac@users.noreply.github.com> Date: Thu Mar 2 11:24:32 2023 +0900 Fix the openaichat example (langchain-ai#1377) The example was wrong. commit 4b5e850 Author: Harrison Chase <hw.chase.17@gmail.com> Date: Wed Mar 1 11:47:01 2023 -0800 chatgpt wrapper (langchain-ai#1367) commit 4d4b43c Author: Harrison Chase <hw.chase.17@gmail.com> Date: Wed Mar 1 09:40:31 2023 -0800 fix doc names (langchain-ai#1354) commit c01f910 Author: Harrison Chase <hw.chase.17@gmail.com> Date: Wed Mar 1 08:20:24 2023 -0800 bump version to 0097 (langchain-ai#1365) commit edb3915 Author: Christie Jacob <christeejacobs@gmail.com> Date: Wed Mar 1 19:21:37 2023 +0400 typo in vectorstores (langchain-ai#1362) commit fe7dbec Author: Harrison Chase <hw.chase.17@gmail.com> Date: Tue Feb 28 22:19:11 2023 -0800 pandas and csv agents (langchain-ai#1353)
- Loading branch information
Showing
51 changed files
with
3,455 additions
and
139 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,202 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "7094e328", | ||
"metadata": {}, | ||
"source": [ | ||
"# CSV Agent\n", | ||
"\n", | ||
"This notebook shows how to use agents to interact with a csv. It is mostly optimized for question answering.\n", | ||
"\n", | ||
"**NOTE: this agent calls the Pandas DataFrame agent under the hood, which in turn calls the Python agent, which executes LLM generated Python code - this can be bad if the LLM generated Python code is harmful. Use cautiously.**\n", | ||
"\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "827982c7", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from langchain.agents import create_csv_agent" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "caae0bec", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from langchain.llms import OpenAI" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 11, | ||
"id": "16c4dc59", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"agent = create_csv_agent(OpenAI(temperature=0), 'titanic.csv', verbose=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 12, | ||
"id": "46b9489d", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"\n", | ||
"\n", | ||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", | ||
"\u001b[32;1m\u001b[1;3mThought: I need to count the number of rows\n", | ||
"Action: python_repl_ast\n", | ||
"Action Input: len(df)\u001b[0m\n", | ||
"Observation: \u001b[36;1m\u001b[1;3m891\u001b[0m\n", | ||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n", | ||
"Final Answer: There are 891 rows in the dataframe.\u001b[0m\n", | ||
"\n", | ||
"\u001b[1m> Finished chain.\u001b[0m\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"'There are 891 rows in the dataframe.'" | ||
] | ||
}, | ||
"execution_count": 12, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"agent.run(\"how many rows are there?\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"id": "a96309be", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"\n", | ||
"\n", | ||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", | ||
"\u001b[32;1m\u001b[1;3mThought: I need to count the number of people with more than 3 siblings\n", | ||
"Action: python_repl_ast\n", | ||
"Action Input: df[df['SibSp'] > 3].shape[0]\u001b[0m\n", | ||
"Observation: \u001b[36;1m\u001b[1;3m30\u001b[0m\n", | ||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n", | ||
"Final Answer: 30 people have more than 3 siblings.\u001b[0m\n", | ||
"\n", | ||
"\u001b[1m> Finished chain.\u001b[0m\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"'30 people have more than 3 siblings.'" | ||
] | ||
}, | ||
"execution_count": 6, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"agent.run(\"how many people have more than 3 sibligngs\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"id": "964a09f7", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"name": "stdout", | ||
"output_type": "stream", | ||
"text": [ | ||
"\n", | ||
"\n", | ||
"\u001b[1m> Entering new AgentExecutor chain...\u001b[0m\n", | ||
"\u001b[32;1m\u001b[1;3mThought: I need to calculate the average age first\n", | ||
"Action: python_repl_ast\n", | ||
"Action Input: df['Age'].mean()\u001b[0m\n", | ||
"Observation: \u001b[36;1m\u001b[1;3m29.69911764705882\u001b[0m\n", | ||
"Thought:\u001b[32;1m\u001b[1;3m I can now calculate the square root\n", | ||
"Action: python_repl_ast\n", | ||
"Action Input: math.sqrt(df['Age'].mean())\u001b[0m\n", | ||
"Observation: \u001b[36;1m\u001b[1;3mname 'math' is not defined\u001b[0m\n", | ||
"Thought:\u001b[32;1m\u001b[1;3m I need to import the math library\n", | ||
"Action: python_repl_ast\n", | ||
"Action Input: import math\u001b[0m\n", | ||
"Observation: \u001b[36;1m\u001b[1;3mNone\u001b[0m\n", | ||
"Thought:\u001b[32;1m\u001b[1;3m I can now calculate the square root\n", | ||
"Action: python_repl_ast\n", | ||
"Action Input: math.sqrt(df['Age'].mean())\u001b[0m\n", | ||
"Observation: \u001b[36;1m\u001b[1;3m5.449689683556195\u001b[0m\n", | ||
"Thought:\u001b[32;1m\u001b[1;3m I now know the final answer\n", | ||
"Final Answer: 5.449689683556195\u001b[0m\n", | ||
"\n", | ||
"\u001b[1m> Finished chain.\u001b[0m\n" | ||
] | ||
}, | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"'5.449689683556195'" | ||
] | ||
}, | ||
"execution_count": 7, | ||
"metadata": {}, | ||
"output_type": "execute_result" | ||
} | ||
], | ||
"source": [ | ||
"agent.run(\"whats the square root of the average age?\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "551de2be", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.9.1" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
Oops, something went wrong.