j4rs stands for 'Java for Rust' and allows effortless calls to Java code from Rust and vice-versa.
- Rust to Java direction support (call Java from Rust).
- No special configuration needed (no need to tweak LD_LIBRARY_PATH, PATH etc).
- Easily instantiate and invoke Java classes.
- Support custom types via serialization.
- .async/.await support
- Casting support.
- Java arrays / variadic support.
- Java generics support.
- Java primitives support.
- Java instances invocations chaining.
- Java -> Rust callbacks support.
- Simple Maven artifacts download and deployment.
- Java -> Rust support (Call Rust from Java).
- JavaFX support (including FXML support).
- Tested on Linux, Windows and Android.
use j4rs::{Instance, InvocationArg, Jvm, JvmBuilder};
// Create a JVM
let jvm = JvmBuilder::new().build()?;
// Create a java.lang.String instance
let string_instance = jvm.create_instance(
"java.lang.String", // The Java class to create an instance for
InvocationArg::empty(), // An array of `InvocationArg`s to use for the constructor call - empty for this example
)?;
// The instances returned from invocations and instantiations can be viewed as pointers to Java Objects.
// They can be used for further Java calls.
// For example, the following invokes the `isEmpty` method of the created java.lang.String instance
let boolean_instance = jvm.invoke(
&string_instance, // The String instance created above
"isEmpty", // The method of the String instance to invoke
InvocationArg::empty(), // The `InvocationArg`s to use for the invocation - empty for this example
)?;
// If we need to transform an `Instance` to some Rust value, the `to_rust` should be called
let rust_boolean: bool = jvm.to_rust(boolean_instance)?;
println!("The isEmpty() method of the java.lang.String instance returned {}", rust_boolean);
// The above prints:
// The isEmpty() method of the java.lang.String instance returned true
// Static invocation
let _static_invocation_result = jvm.invoke_static(
"java.lang.System", // The Java class to invoke
"currentTimeMillis", // The static method of the Java class to invoke
InvocationArg::empty(), // The `InvocationArg`s to use for the invocation - empty for this example
)?;
// Access a field of a class
let system_class = jvm.static_class("java.lang.System")?;
let system_out_field = jvm.field(&system_class, "out");
// Retrieve an enum constant using the field
let access_mode_enum = jvm.static_class("java.nio.file.AccessMode")?;
let access_mode_write = jvm.field(&access_mode_enum, "WRITE")?;
// Retrieve a nested class (note the use of `$` instead of `.`)
let state = jvm.static_class("java.lang.Thread$State")?;
Instances
s of Java List
s and Map
s can be created with the java_list
and java_map
functions:
let rust_vec = vec!["arg1", "arg2", "arg3", "arg33"];
// Generate a Java List<String>. The Java List implementation is the one that is returned by java.util.Arrays#asList
let java_list_instance = jvm.java_list(
JavaClass::String,
rust_vec)?;
let rust_map = HashMap::from([
("Potatoes", 3),
("Tomatoes", 33),
("Carrotoes", 333),
]);
// Generate a java.util.HashMap.
let java_map_instance = jvm.java_map(
JavaClass::String,
JavaClass::Integer,
rust_map)?;
j4rs uses the InvocationArg
enum to pass arguments to the Java world.
Users can benefit of the existing TryFrom
implementations for several basic types:
let i1 = InvocationArg::try_from("a str")?; // Creates an arg of java.lang.String
let my_string = "a string".to_owned();
let i2 = InvocationArg::try_from(my_string)?; // Creates an arg of java.lang.String
let i3 = InvocationArg::try_from(true)?; // Creates an arg of java.lang.Boolean
let i4 = InvocationArg::try_from(1_i8)?; // Creates an arg of java.lang.Byte
let i5 = InvocationArg::try_from('c')?; // Creates an arg of java.lang.Character
let i6 = InvocationArg::try_from(1_i16)?; // Creates an arg of java.lang.Short
let i7 = InvocationArg::try_from(1_i64)?; // Creates an arg of java.lang.Long
let i8 = InvocationArg::try_from(0.1_f32)?; // Creates an arg of java.lang.Float
let i9 = InvocationArg::try_from(0.1_f64)?; // Creates an arg of java.lang.Double
And for Vec
s:
let my_vec: Vec<String> = vec![
"abc".to_owned(),
"def".to_owned(),
"ghi".to_owned()];
// Creates List<String>
let i10 = InvocationArg::try_from(my_vec.as_slice())?;
let another_vec: Vec<f64> = vec![0.0, 1.0, 3.6];
// Creates List<Float>
let i11 = InvocationArg::try_from(another_vec.as_slice())?;
The j4rs
apis accept InvocationArg
s either as references, or values:
let inv_args = InvocationArg::try_from("arg from Rust")?;
let _ = jvm.create_instance("java.lang.String", &[&inv_args])?; // Pass a reference
let _ = jvm.create_instance("java.lang.String", &[inv_args])?; // Move
The Instance
s returned by j4rs can be transformed to InvocationArg
s and be further used for invoking methods as well:
let one_more_string_instance = jvm.create_instance(
"java.lang.String", // The Java class to create an instance for
InvocationArg::empty(), // The `InvocationArg`s to use for the constructor call - empty for this example
)?;
let i11 = InvocationArg::try_from(one_more_string_instance)?;
To create an InvocationArg
that represents a null
Java value, use the From
implementation with the Null
struct:
let null_string = InvocationArg::from(Null::String); // A null String
let null_integer = InvocationArg::from(Null::Integer); // A null Integer
let null_obj = InvocationArg::from(Null::Of("java.util.List")); // A null object of any other class. E.g. List
Custom types, for which there is no TryFrom
implementation, are also supported via serialization.
To use a custom struct MyBean
as an InvocationArg
it needs to be serializable:
#[derive(Serialize, Deserialize, Debug)]
#[allow(non_snake_case)]
struct MyBean {
someString: String,
someInteger: isize,
}
Then, an InvocationArg
can be created like:
let my_bean = MyBean {
someString: "My String In A Bean".to_string(),
someInteger: 33,
};
let ia = InvocationArg::new(&my_bean, "org.astonbitecode.j4rs.tests.MyBean");
And it can be used as an argument to a Java method that accepts org.astonbitecode.j4rs.tests.MyBean
instances.
Of course, there should exist a respective Java class in the classpath for the deserialization to work and the custom Java Object to be created:
package org.astonbitecode.j4rs.tests;
public class MyBean {
private String someString;
private Integer someInteger;
public MyBean() {
}
public String getSomeString() {
return someString;
}
public void setSomeString(String someString) {
this.someString = someString;
}
public Integer getSomeInteger() {
return someInteger;
}
public void setSomeInteger(Integer someInteger) {
this.someInteger = someInteger;
}
}
(v0.16.0 onwards)
j4rs
supports .async/.await
viaJvm::invoke_async
function.
The function returns a Future, which is completed via the Receiver
of a oneshot channel.
In Java side, the methods that can be invoked by invoke_async
, must return a Java Future.
When the Java Future completes, the Java side of j4rs
invokes native Rust code that completes the pending Rust Future
with either success or failure, using the Sender
of the oneshot channel that was created when the invoke_async
was called.
For example, assuming we have a Java method that returns a Future:
package org.astonbitecode.j4rs.tests;
public class MyTest {
private static ExecutorService executor = Executors.newSingleThreadExecutor();
// Just return the passed String in a Future
public Future<String> getStringWithFuture(String string) {
CompletableFuture<String> completableFuture = new CompletableFuture<>();
executor.submit(() -> {
completableFuture.complete(string);
return null;
});
return completableFuture;
}
}
We can invoke it like following:
let s_test = "j4rs_rust";
let my_test = jvm.create_instance("org.astonbitecode.j4rs.tests.MyTest", InvocationArg::empty())?;
let instance = jvm.invoke_async(&my_test, "getStringWithFuture", &[InvocationArg::try_from(s_test)?]).await?;
let string: String = jvm.to_rust(instance)?;
assert_eq!(s_test, string);
Please note that it is better for the Java methods that are invoked by the invoke_async
function
to return a CompletableFuture,
as this improves performance.
j4rs
handles simple Java Futures that are not CompletableFuture
s with polling,
using an internal one-threaded ScheduledExecutorService
.
This has apparent performance issues.
Instance
s are Send
and can be safely sent to other threads. However, because of Send Approximation, the Future
returned by invoke_async
is not Send
, even if it just contains an Instance
. This is because the Jvm
is being captured by the async
call as well and the Jvm
is not Send
.
In order to have a Future<Instance>
that is Send
, the Jvm::invoke_into_sendable_async
can be used. This function does not get a Jvm
as argument; it creates one internally when needed and applies some scoping workarounds in order to achieve returning a Future<Instance>
which is also Send
.
Discussion here.
An Instance
may be casted to some other Class:
let instantiation_args = vec![InvocationArg::try_from("Hi")?];
let instance = jvm.create_instance("java.lang.String", instantiation_args.as_ref())?;
jvm.cast(&instance, "java.lang.Object")?;
// Create a Java array of Strings `String []`
let s1 = InvocationArg::try_from("string1")?;
let s2 = InvocationArg::try_from("string2")?;
let s3 = InvocationArg::try_from("string3")?;
let arr_instance = jvm.create_java_array("java.lang.String", &[s1, s2, s3])?;
// Invoke the Arrays.asList(...) and retrieve a java.util.List<String>
let list_instance = jvm.invoke_static("java.util.Arrays", "asList", &[InvocationArg::from(arr_instance)])?;
When creating an array of primitives, each InvocationArg
item needs to be converted to one containing primitive value.
let doubles = vec![0.1, 466.5, 21.37];
// Creates Java `double` primitives within a Rust `Vec`
let double_args: Vec<InvocationArg> = doubles.iter()
.map(|value| Ok::<_, J4RsError>(
InvocationArg::try_from(value)?.into_primitive()?
))
.collect::<Result<_, J4RsError>>()?
// Creates an instance of `double []`
let doubles_array = InvocationArg::try_from(
jvm.create_java_array("double", &double_args)?
)?;
// Assuming the following map_instance is a Map<String, Integer>
// we may invoke its put method
jvm.invoke(&map_instance, "put", &[InvocationArg::try_from("one")?, InvocationArg::try_from(1)?])?;
Even if auto boxing and unboxing is in place, j4rs
cannot invoke methods with primitive int arguments using Integer instances.
For example, the following code does not work:
let ia = InvocationArg::try_from(1_i32)?;
jvm.create_instance("java.lang.Integer", &[ia])?;
It throws an InstantiationException because the constructor of Integer
takes a primitive int
as an argument:
Exception in thread "main" org.astonbitecode.j4rs.errors.InstantiationException: Cannot create instance of java.lang.Integer at org.astonbitecode.j4rs.api.instantiation.NativeInstantiationImpl.instantiate(NativeInstantiationImpl.java:37) Caused by: java.lang.NoSuchMethodException: java.lang.Integer.(java.lang.Integer) at java.base/java.lang.Class.getConstructor0(Class.java:3349) at java.base/java.lang.Class.getConstructor(Class.java:2151) at org.astonbitecode.j4rs.api.instantiation.NativeInstantiationImpl.createInstance(NativeInstantiationImpl.java:69) at org.astonbitecode.j4rs.api.instantiation.NativeInstantiationImpl.instantiate(NativeInstantiationImpl.java:34)
In situations like this, the java.lang.Integer
instance should be transformed to a primitive int
first:
let ia = InvocationArg::try_from(1_i32)?.into_primitive()?;
jvm.create_instance("java.lang.Integer", &[ia]);
use j4rs::{Instance, InvocationArg, Jvm, JvmBuilder};
// Create a JVM
let jvm = JvmBuilder::new().build()?;
// Create an instance
let string_instance = jvm.create_instance(
"java.lang.String",
&[InvocationArg::try_from(" a string ")?],
)?;
// Perform chained operations on the instance
let string_size: isize = jvm.chain(string_instance)
.invoke("trim", InvocationArg::empty())?
.invoke("length", InvocationArg::empty())?
.to_rust()?;
// Assert that the string was trimmed
assert!(string_size == 8);
j4rs
provides support for Java to Rust callbacks.
These callbacks come to the Rust world via Rust Channels.
In order to initialize a channel that will provide Java callback values, the Jvm::invoke_to_channel
should be called. It returns a result of InstanceReceiver
struct, which contains a Channel Receiver:
// Invoke of a method of a Java instance and get the returned value in a Rust Channel.
// Create an Instance of a class that supports Native Callbacks
// (the class just needs to extend the
// `org.astonbitecode.j4rs.api.invocation.NativeCallbackToRustChannelSupport`)
let i = jvm.create_instance(
"org.astonbitecode.j4rs.tests.MyTest",
InvocationArg::empty())?;
// Invoke the method
let instance_receiver_res = jvm.invoke_to_channel(
&i, // The instance to invoke asynchronously
"performCallback", // The method to invoke asynchronoysly
InvocationArg::empty() // The `InvocationArg`s to use for the invocation - empty for this example
);
// Wait for the response to come
let instance_receiver = instance_receiver_res?;
let _ = instance_receiver.rx().recv();
In the Java world, a Class that can do Native Callbacks must extend the
org.astonbitecode.j4rs.api.invocation.NativeCallbackToRustChannelSupport
For example, consider the following Java class.
The performCallback
method spawns a new Thread and invokes the doCallback
method in this Thread. The doCallback
method is inherited by the NativeCallbackToRustChannelSupport
class.
package org.astonbitecode.j4rs.tests;
import org.astonbitecode.j4rs.api.invocation.NativeCallbackToRustChannelSupport;
public class MyTest extends NativeCallbackToRustChannelSupport {
public void performCallback() {
new Thread(() -> {
doCallback("THIS IS FROM CALLBACK!");
}).start();
}
}
Since release 0.6.0 there is the possibility to download Java artifacts from the Maven repositories. While it is possible to define more repos, the maven central is by default and always available.
For example, here is how the dropbox dependency can be downloaded and get deployed to be used by the rust code:
let dbx_artifact = MavenArtifact::from("com.dropbox.core:dropbox-core-sdk:3.0.11");
jvm.deploy_artifact(dbx_artifact)?;
Additional artifactories can be used as well:
let jvm: Jvm = JvmBuilder::new()
.with_maven_settings(MavenSettings::new(vec![
MavenArtifactRepo::from("myrepo1::https://my.repo.io/artifacts"),
MavenArtifactRepo::from("myrepo2::https://my.other.repo.io/artifacts")])
)
.build()
?;
jvm.deploy_artifact(&MavenArtifact::from("io.my:library:1.2.3"))?;
Maven artifacts are added automatically to the classpath and do not need to be explicitly added.
A good practice is that the deployment of maven artifacts is done by build scripts, during the crate's compilation. This ensures the classpath is properly populated during the actual Rust code execution.
Note: the deployment does not take care the transitive dependencies yet.
If we have one jar that needs to be accessed using j4rs
, we need to add it in the classpath during the JVM creation:
let entry = ClasspathEntry::new("/home/myuser/dev/myjar-1.0.0.jar");
let jvm: Jvm = JvmBuilder::new()
.classpath_entry(entry)
.build()?;
The jar for j4rs
is available in the Maven Central. It may be used by adding the following dependency in a pom:
<dependency>
<groupId>io.github.astonbitecode</groupId>
<artifactId>j4rs</artifactId>
<version>0.21.0</version>
<scope>provided</scope>
</dependency>
Note that the scope
is provided
. This is because the j4rs
Java resources are always available with the j4rs
crate.
Use like this in order to avoid possible classloading errors.
j4rs
can be used in Android either to call a Rust native library (Java -> Rust direction), or with a native-only approach (Android NativeActivity) (Rust -> Java direction, using android-activity crate, ndk-context crate, or similar).
Here is what is needed when you have a Java/Kotlin app and you need to call a function from a Rust native library.
- Define your crate as cdylib in the
Cargo.toml
:
[lib]
name = "myandroidapp"
crate-type = ["cdylib"]
- Implement a
jni_onload
function and apply the providedJavaVM
to thej4rs
like following:
const JNI_VERSION_1_6: jint = 0x00010006;
#[allow(non_snake_case)]
#[no_mangle]
pub extern fn jni_onload(env: *mut JavaVM, _reserved: jobject) -> jint {
j4rs::set_java_vm(env);
jni_version_1_6
}
Create an Activity
and define your native methods normally, as described here.
Note:
If you encounter any issues when using j4rs in older Android versions, this may be caused by Java 8 compatibility problems.
This is why there is a Java 7
version of j4rs
:
<dependency>
<groupId>io.github.astonbitecode</groupId>
<artifactId>j4rs</artifactId>
<version>0.13.1-java7</version>
</dependency>
Update: Java 7 is no more supported. j4rs
0.13.1 is the last version supporting Java 7.
Please see here.
When you need to call Java from Rust, using crates like android-activity, you will need to initialize the Jvm
, providing the JavaVM
and Activity
from the JNI:
use android_activity::AndroidApp;
use j4rs::{InvocationArg, JvmBuilder};
use j4rs::jni_sys::{JavaVM, jobject};
#[no_mangle]
fn android_main(app: AndroidApp) {
let java_vm: *mut JavaVM = app.vm_as_ptr().cast();
let activity_obj: jobject = app.activity_as_ptr().cast();
let jvm = JvmBuilder::new()
.with_java_vm(java_vm.clone())
.with_classloader_of_activity(activity_obj.clone())
.build()
.unwrap();
}
Please see here.
(v0.13.0 onwards)
A good idea is that this happens during build time, in order the dependencies to be available when the actual Rust application starts and the JVM is initialized. This can happen by adding the following in a build script:
use j4rs::JvmBuilder;
use j4rs::jfx::JavaFxSupport;
fn main() {
let jvm = JvmBuilder::new().build().unwrap();
jvm.deploy_javafx_dependencies().unwrap();
}
There are two choices here; either build the UI using FXML, or, build it traditionally, using Java code. In the code snippets below, you may find comments with a short description for each line.
// Create a Jvm with JavaFX support
let jvm = JvmBuilder::new().with_javafx_support().build()?;
// Start the JavaFX application.
// When the JavaFX application starts, the `InstanceReceiver` channel that is returned from the `start_javafx_app` invocation
// will receive an Instance of `javafx.stage.Stage`.
// The UI may start being built using the provided `Stage`.
let stage = jvm.start_javafx_app()?.rx().recv()?;
// Create a StackPane. Java code: StackPane root = new StackPane();
let root = jvm.create_instance("javafx.scene.layout.StackPane", InvocationArg::empty())?;
// Create the button. Java code: Button btn = new Button();
let btn = jvm.create_instance("javafx.scene.control.Button", InvocationArg::empty())?;
// Get the action channel for this button
let btn_action_channel = jvm.get_javafx_event_receiver(&btn, FxEventType::ActionEvent_Action)?;
// Set the text of the button. Java code: btn.setText("Say Hello World to Rust");
jvm.invoke(&btn, "setText", &["A button that sends events to Rust".try_into()?])?;
// Add the button to the GUI. Java code: root.getChildren().add(btn);
jvm.chain(&root)?
.invoke("getChildren", InvocationArg::empty())?
.invoke("add", &[btn.try_into()?])?
.collect();
// Create a new Scene. Java code: Scene scene = new Scene(root, 300, 250);
let scene = jvm.create_instance("javafx.scene.Scene", &[
root.try_into()?,
InvocationArg::try_from(300_f64)?.into_primitive()?,
InvocationArg::try_from(250_f64)?.into_primitive()?])?;
// Set the title for the scene. Java code: stage.setTitle("Hello Rust world!");
jvm.invoke(&stage, "setTitle", &["Hello Rust world!".try_into()?])?;
// Set the scene in the stage. Java code: stage.setScene(scene);
jvm.invoke(&stage, "setScene", &[scene.try_into()?])?;
// Show the stage. Java code: stage.show();
jvm.invoke(&stage, "show", InvocationArg::empty())?;
3.b Implement the UI with FXML
I personally prefer building the UI with FXMLs, using for example the Scene Builder.
The thing to keep in mind is that the controller class should be defined in the root FXML element and it should be fx:controller="org.astonbitecode.j4rs.api.jfx.controllers.FxController"
Here is an FXML example; it creates a window with a label and a button:
<?xml version="1.0" encoding="UTF-8"?>
<?import javafx.scene.control.Button?>
<?import javafx.scene.control.Label?>
<?import javafx.scene.layout.HBox?>
<?import javafx.scene.layout.VBox?>
<?import javafx.scene.text.Font?>
<VBox alignment="TOP_CENTER" maxHeight="-Infinity" maxWidth="-Infinity" minHeight="-Infinity" minWidth="-Infinity" prefHeight="400.0" prefWidth="725.0" spacing="33.0" xmlns="http://javafx.com/javafx/11.0.1" xmlns:fx="http://javafx.com/fxml/1" fx:controller="org.astonbitecode.j4rs.api.jfx.controllers.FxController">
<children>
<Label text="JavaFX in Rust">
<font>
<Font size="65.0" />
</font>
</Label>
<Label text="This UI is loaded with a FXML file" />
<HBox alignment="CENTER" prefHeight="100.0" prefWidth="200.0" spacing="10.0">
<children>
<Button id="helloButton" mnemonicParsing="false" text="Say Hello" />
</children>
</HBox>
</children>
</VBox>
The id
of the elements can be used to retrieve the respective Nodes in Rust and act upon them (eg. adding Event Listeners, changing the texts or effects on them etc).
// Create a Jvm with JavaFX support
let jvm = JvmBuilder::new().with_javafx_support().build()?;
// Start the JavaFX application.
// When the JavaFX application starts, the `InstanceReceiver` channel that is returned from the `start_javafx_app` invocation
// will receive an Instance of `javafx.stage.Stage`.
// The UI may start being built using the provided `Stage`.
let stage = jvm.start_javafx_app()?.rx().recv()?;
// Set the title for the scene. Java code: stage.setTitle("Hello Rust world!");
jvm.invoke(&stage, "setTitle", &["Hello JavaFX from Rust!".try_into()?])?;
// Show the stage. Java code: stage.show();
jvm.invoke(&stage, "show", InvocationArg::empty())?;
// Load a fxml. This returns an `FxController` which can be used in order to find Nodes by their id,
// add Event Listeners and more.
let controller = jvm.load_fxml(&PathBuf::from("./fxml/jfx_in_rust.fxml"), &stage)?;
// Wait for the controller to be initialized. This is not mandatory, it is here to shoe that the functionality exists.
let _ = controller.on_initialized_callback(&jvm)?.rx().recv()?;
println!("The controller is initialized!");
// Get the InstanceReceiver to retrieve callbacks from the JavaFX button with id helloButton
let hello_button_action_channel = controller.get_event_receiver_for_node("helloButton", FxEventType::ActionEvent_Action, &jvm)?;
For a complete example, please have a look here.
(v0.12.0 onwards)
-
Add the two needed dependencies (
j4rs
andj4rs_derive
) in theCargo.toml
and mark the project as acdylib
, in order to have a shared library as output. This library will be loaded and used by the Java code to achieve JNI calls. -
Annotate the functions that will be accessible from the Java code with the
call_from_java
attribute:
#[call_from_java("io.github.astonbitecode.j4rs.example.RustSimpleFunctionCall.fnnoargs")]
fn my_function_with_no_args() {
println!("Hello from the Rust world!");
// If you need to have a Jvm here, you need to attach the thread
let jvm = Jvm::attach_thread().unwrap();
// Now you may further call Java classes and methods as usual!
}
For a complete example, please have a look here.
Note: JNI is used behind the scenes, so, any conventions in naming that hold for JNI, should hold for j4rs
too.
For example, underscores (_
) should be escaped and become _1
in the call_from_java
definition.
During build, j4rs
creates a jassets
directory which contains the "java world" that is needed for the crate to work.
It is always automatically populated with Java libraries and can be considered something like a default classpath container that should always be available.
By default, jassets
lies in the same directory with the crate-generated artifacts (under CARGO_TARGET_DIR), so there should not be any issues during development.
But how can the application be shipped after the implementation is done?
Someone may specify a different base_path for j4rs during the Jvm initialization, issuing something like:
let jvm_res = j4rs::JvmBuilder::new()
.with_base_path("/opt/myapp")
.build();
The base_path
defines the location of two directories that are needed for j4rs to work;
namely jassets
and deps
.
- jassets contains the j4rs jar and other jars that may be deployed using Maven.
- deps should contain the j4rs dynamic library. This is needed to achieve callbacks from java to rust.
The
deps
dir is not needed if the application does not execute Java->Rust callbacks.
So, someone may have their application binary under eg. /usr/bin
, and the jassets
and deps
directories under /opt/myapp/
, or $HOME/.myapp
, or anywhere else.
An example directory tree could be:
/
+ --- usr
| + --- bin
| + --- myapp
|
+ --- opt
+ --- myapp
+ --- jassets
+ --- deps
Moreover, there is also a utility function that automatically performs copying of the two directories under a specific path.
The Jvm::copy_j4rs_libs_under
function can be called by the build script of the crate that is being shipped:
Jvm::copy_j4rs_libs_under("/opt/myapp")?;
After that, /opt/myapp
will contain everything that is needed in order j4rs
to work,
as long as the Jvm creation is done using the with_base_path
method:
let jvm_res = j4rs::JvmBuilder::new()
.with_base_path("/opt/myapp")
.build();
I get java.lang.NoSuchMethodError: java.net.URLClassLoader.<init>(Ljava/lang/String;[Ljava/net/URL;Ljava/lang/ClassLoader;)V
j4rs
uses a custom ClassLoader, that needs minimum Java version 9. In order to use the default classloader that supports
older Java versions, invoke the JvmBuilder::with_default_classloader
when building the Jvm
.
j4rs
uses the log crate, so, logging may be configured accordingly, depending on the chosen implementation.
However, it also supports console logging, which is configured with setting the env var J4RS_CONSOLE_LOG_LEVEL
.
Accepted values are debug
, info
, warn
, error
and disabled
.
At your option, under:
- Apache License, Version 2.0, (http://www.apache.org/licenses/LICENSE-2.0)
- MIT license (http://opensource.org/licenses/MIT)