Skip to content

機器人學期末專題,結合深度學習、機器人視覺與機械手臂運動學

Notifications You must be signed in to change notification settings

avmm9898/Robot_final_Pj

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

88 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

2020 Final Project of Robotics

Target

Insert the object into hole using robot(wheel and arm) with RGBD camera.

Result

Final

Approach

Insert

Files

  • arduino_worker An arduino script that allow to communicate with PC
  • arduino_connector.py A python script that allow to communicate with arduino. The document of how to send command to arduino written here.
  • control.py Some utility
  • playYOLO.py Yolo related codes, using openCV-dnn module to load darknet and detect object.
  • realsense_basic.py Camera Object for reading colored image and depth image
  • arm_inverse_kinematic.py Calculate inverse kinematic
  • arm_move.py
    1. Moving arm by xyz position or by specific angle
    2. Calculate the transform from camera
  • arm_move_with_visual.py Detect object from image and move the arm
  • car_move_with_visual.py Read image and move the car
  • main.py The main function that move the car to platform and move the arm to it
  • config.py The config file. e.g. serial port
  • /data Put non-code data here
  • /doc Put documents here

Requirement

  • Arduino(Uno)

    • PWM library
    • arduino-cli lib install "Adafruit PWM Servo Driver Library"
    • TimerOne
    • arduino-cli lib install "TimerOne"
  • Python3 and it's package

    • Python3.7+
    • numpy
    • pyserial
  • opencv-python

  • Realsense https://github.com/IntelRealSense/librealsense

Unknown script

  • InputControlDistance
  • encoderSpeedDetection

Test

  • test each joint of the arms test_arm/test_arm.ino

  • test the arms repeatedly test_arm_repetitive.py

  • test the car with encoding test_encoder_car_control/test_encoder_car_control.ino

Data

Document

State:

  1. YOLO偵測平台目標物,回傳XYZ,車子朝目標逼近
  2. 當行駛至70cm內,精準度增加,可以偵測深度(深度值700以內還算精準)
  3. 距離平台目標50cmcm左右,切換至洞偵測模型,開始辨識洞
  4. 辨識到3個洞,回傳3組XYZ
  5. 手臂根據XYZ移動

About

機器人學期末專題,結合深度學習、機器人視覺與機械手臂運動學

Resources

Stars

Watchers

Forks

Contributors 4

  •  
  •  
  •  
  •