selenium PhantomJS sklearn BeautifulSoup caffe
部分依赖文件见当前目录 *.py
caffe的安装等配置请自行查阅,可以先只编译一个only cpu的
爬一些提供免费代理的网站,获取到的代理要根据速度要求等check, 可扩展爬取的网站,这里只简单爬了两个,代理质量一般,也可以用 Tor不过好像也不怎么好使了
from SpiderProxy import SpiderProxy
import ZLog
ZLog.init_logging()
pxy = SpiderProxy()
pxy.spider_proxy360()
pxy.spider_xicidaili()
pxy.check_proxy()
pxy.save_csv()
211.151.48.60:8080 check ok
139.196.108.68:80 check ok
110.178.198.55:8888 check ok
106.75.128.90:80 check ok
60.194.100.51:80 check ok
117.57.188.176:81 check ok
45.32.19.10:3128 check ok
110.181.181.164:8888 check ok
39.87.237.90:81 check ok
111.206.81.248:80 check ok
47.89.53.92:3128 check ok
112.87.106.217:81 check ok
218.89.69.211:8088 check ok
139.59.180.41:8080 check ok
124.133.230.254:80 check ok
128.199.186.153:8080 check ok
192.249.72.148:3128 check ok
112.112.70.116:80 check ok
128.199.178.73:8080 check ok
178.32.153.219:80 check ok
79.141.70.78:3128 check ok
119.6.136.122:80 check ok
46.219.78.221:8081 check ok
proxy_list len=23
import SpiderBdImg
爬虫的可设置项:
- g_enable_show: 是否使用有界面浏览器还是使用PHANTOMJS
- g_enable_proxy: 浏览器的进程是否启用代理,默认不需要,下载原图一定是使用代理没有开关
- g_enable_debug: 单进程,单线程调试模式可以debug断点
- g_enable_stream: 使用流下载图片
- K_SCROLL_MOVE_DISTANCE = 200: 模拟js window下滑距离,增大提高爬取速度
- K_SCROLL_SLEEP_TIME = 3
- K_COLLECT_PROCESS_CNT = 3: 同时启动进程个数
由于使用了线程池控制max线程数,所以就算你提高K_SCROLL_MOVE_DISTANCE,K_SCROLL_SLEEP_TIME也不会有下载速度的提升, 需要修改线程池初始化现在设置了3倍代理数量,具体详看代码: with ThreadPoolExecutor(max_workers=len(self.back_proxys) * 3) as executor:
默认启动google有界面浏览器了,因为代理质量太差,所以就起了三个进程,如果要启动多个进程在乎效率,代理质量够好,要使用PHANTOMJS
n_jobs = 3
if g_enable_debug:
n_jobs = 1
parallel = Parallel(
n_jobs=n_jobs, verbose=0, pre_dispatch='2*n_jobs')
parallel(delayed(do_spider_parallel)(proxy_df, ind, search_name) for ind, search_name in enumerate(search_list))
使用selenium配合BeautifulSoup,requests爬取图片,达到目标数量或者到所有图片停止 具体请参考SpiderBdImg
SpiderBdImg.spider_bd_img([u'拉布拉多', u'哈士奇', u'金毛', u'萨摩耶', u'柯基', u'柴犬',
u'边境牧羊犬', u'比格', u'德国牧羊犬', u'杜宾', u'泰迪犬', u'博美', u'巴哥', u'牛头梗'],
use_cache=True)
makedirs ../gen/baidu/image/金毛
makedirs ../gen/baidu/image/哈士奇
makedirs ../gen/baidu/image/拉布拉多
makedirs ../gen/baidu/image/萨摩耶
makedirs ../gen/baidu/image/柯基
makedirs ../gen/baidu/image/柴犬
makedirs ../gen/baidu/image/边境牧羊犬
makedirs ../gen/baidu/image/比格
makedirs ../gen/baidu/image/德国牧羊犬
makedirs ../gen/baidu/image/杜宾
makedirs ../gen/baidu/image/泰迪犬
makedirs ../gen/baidu/image/博美
makedirs ../gen/baidu/image/巴哥
makedirs ../gen/baidu/image/牛头梗
人工大概扫一下图片,把太过份的删了,不用太仔细,太概扫扫就完事, 这工具其实也是可以自动识别的,先自己扫扫吧
为caffe的lmdb做准备将图片都转换成jpeg,具体参考ImgStdHelper
运行成功后所有图片为jpeg后缀名称
import ImgStdHelper
ImgStdHelper.std_img_from_root_dir('../gen/baidu/image/', 'jpg')
!../sh/DogType.sh
data_path = '../gen/dog_judge/data.txt'
print(open(data_path).read(400))
哈士奇/001e5dd0f5aa0959503324336f24a5ea.jpeg 1
哈士奇/001eae03d6f282d1e9f4cb52331d3e20.jpeg 1
哈士奇/0047ea48c765323a53a614d0ed93353b.jpeg 1
哈士奇/006e3bd75b2375149dab9d0323b9fc59.jpeg 1
哈士奇/0084e12ec1c15235a78489a0f4703859.jpeg 1
哈士奇/009724727e40158f5b84a50a7aaaa99b.jpeg 1
哈士奇/00a9d66c72bbed2861f632d07a98db8d.jpeg 1
哈士奇/00dabcba4437f77859b1d8ed37c85360.jpeg 1
import pandas as pd
import numpy as np
class_map = pd.DataFrame(np.array([[1, 2, 3, 4, 5, 6], ['哈士奇', '拉布拉多', '博美', '柴犬', '德国牧羊犬', '杜宾']]).T,
columns=['class', 'name'],
index=np.arange(0, 6))
class_map.to_csv('../gen/class_map.csv', columns=class_map.columns, index=True)
import TrainValSplit
TrainValSplit.train_val_split(data_path, n_folds=10)
train_path = '../gen/dog_judge/train_split.txt'
with open(train_path) as f:
print('train set len = {}'.format(len(f.readlines())))
val_path = '../gen/dog_judge/val_split.txt'
with open(val_path) as f:
print('val set len = {}'.format(len(f.readlines())))
train set len = 9628
val set len = 1066
!../sh/DogLmdb.sh
!../sh/DogMean.sh
见目录sh下pb/train_val.prototxt文件。
见目录sh下pb/solver.prototxt文件。
使用bvlc_googlenet的solver.prototxt,train_val.prototxt训练自己的数据
根据训练数据及测试数据的量修改solver.prototxt,train_val.prototxt
由于测试数据大概1000 -> batch_size=50, test_iter: 20
训练数据大概10000 -> test_interval: 1000
display: 100 snapshot: 5000(其实snapshot大点没事,反正没次crl + c结束时会生成mode), 如过需要多留几个做对比,可调小
可以把test的mirror设置true反正数据不算多
修改DogTrain.sh 中CAFEBIN=/root/caffe/build/tools/caffe为你的caffe路径
修改solver.prototxt,train_val.prototxt中所有绝对路径为你的路径,没法使用相对路径除非想对caffe路径,那样更麻烦
详情请参考solver.prototxt,train_val.prototxt
之后使用!../sh/DogTrain.sh开始训练数据,由于要打太多日志,就不在ipython中运行了,单独启个窗口来, 生成caffemodel
见pb/deploy.prototxt文件。
import caffe
caffe.set_mode_cpu()
model_def = '../pb/deploy.prototxt' # 模型文件
model_weights = '../gen/dog_judge/dog_judge_train_iter_5000.caffemodel' # 训练结果
model_mean_file = '../gen/dog_judge/mean.binaryproto' # 均值文件
net = caffe.Net(model_def, model_weights, caffe.TEST)
# 均值处理
mean_blob = caffe.proto.caffe_pb2.BlobProto()
mean_blob.ParseFromString(open(model_mean_file, 'rb').read())
mean_npy = caffe.io.blobproto_to_array(mean_blob)
mu = mean_npy.mean(2).mean(2)[0]
print('mu = {}'.format(mu))
# 颜色格式处理
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', mu)
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2,1,0))
mu = [ 116.2626216 129.17550814 137.46700908]
for layer_name, blob in net.blobs.iteritems():
print(layer_name + '\t' + str(blob.data.shape))
data (10, 3, 224, 224)
conv1/7x7_s2 (10, 64, 112, 112)
pool1/3x3_s2 (10, 64, 56, 56)
pool1/norm1 (10, 64, 56, 56)
conv2/3x3_reduce (10, 64, 56, 56)
conv2/3x3 (10, 192, 56, 56)
conv2/norm2 (10, 192, 56, 56)
pool2/3x3_s2 (10, 192, 28, 28)
pool2/3x3_s2_pool2/3x3_s2_0_split_0 (10, 192, 28, 28)
pool2/3x3_s2_pool2/3x3_s2_0_split_1 (10, 192, 28, 28)
pool2/3x3_s2_pool2/3x3_s2_0_split_2 (10, 192, 28, 28)
pool2/3x3_s2_pool2/3x3_s2_0_split_3 (10, 192, 28, 28)
inception_3a/1x1 (10, 64, 28, 28)
inception_3a/3x3_reduce (10, 96, 28, 28)
inception_3a/3x3 (10, 128, 28, 28)
inception_3a/5x5_reduce (10, 16, 28, 28)
inception_3a/5x5 (10, 32, 28, 28)
inception_3a/pool (10, 192, 28, 28)
inception_3a/pool_proj (10, 32, 28, 28)
inception_3a/output (10, 256, 28, 28)
inception_3a/output_inception_3a/output_0_split_0 (10, 256, 28, 28)
inception_3a/output_inception_3a/output_0_split_1 (10, 256, 28, 28)
inception_3a/output_inception_3a/output_0_split_2 (10, 256, 28, 28)
inception_3a/output_inception_3a/output_0_split_3 (10, 256, 28, 28)
inception_3b/1x1 (10, 128, 28, 28)
inception_3b/3x3_reduce (10, 128, 28, 28)
inception_3b/3x3 (10, 192, 28, 28)
inception_3b/5x5_reduce (10, 32, 28, 28)
inception_3b/5x5 (10, 96, 28, 28)
inception_3b/pool (10, 256, 28, 28)
inception_3b/pool_proj (10, 64, 28, 28)
inception_3b/output (10, 480, 28, 28)
pool3/3x3_s2 (10, 480, 14, 14)
pool3/3x3_s2_pool3/3x3_s2_0_split_0 (10, 480, 14, 14)
pool3/3x3_s2_pool3/3x3_s2_0_split_1 (10, 480, 14, 14)
pool3/3x3_s2_pool3/3x3_s2_0_split_2 (10, 480, 14, 14)
pool3/3x3_s2_pool3/3x3_s2_0_split_3 (10, 480, 14, 14)
inception_4a/1x1 (10, 192, 14, 14)
inception_4a/3x3_reduce (10, 96, 14, 14)
inception_4a/3x3 (10, 208, 14, 14)
inception_4a/5x5_reduce (10, 16, 14, 14)
inception_4a/5x5 (10, 48, 14, 14)
inception_4a/pool (10, 480, 14, 14)
inception_4a/pool_proj (10, 64, 14, 14)
inception_4a/output (10, 512, 14, 14)
inception_4a/output_inception_4a/output_0_split_0 (10, 512, 14, 14)
inception_4a/output_inception_4a/output_0_split_1 (10, 512, 14, 14)
inception_4a/output_inception_4a/output_0_split_2 (10, 512, 14, 14)
inception_4a/output_inception_4a/output_0_split_3 (10, 512, 14, 14)
inception_4b/1x1 (10, 160, 14, 14)
inception_4b/3x3_reduce (10, 112, 14, 14)
inception_4b/3x3 (10, 224, 14, 14)
inception_4b/5x5_reduce (10, 24, 14, 14)
inception_4b/5x5 (10, 64, 14, 14)
inception_4b/pool (10, 512, 14, 14)
inception_4b/pool_proj (10, 64, 14, 14)
inception_4b/output (10, 512, 14, 14)
inception_4b/output_inception_4b/output_0_split_0 (10, 512, 14, 14)
inception_4b/output_inception_4b/output_0_split_1 (10, 512, 14, 14)
inception_4b/output_inception_4b/output_0_split_2 (10, 512, 14, 14)
inception_4b/output_inception_4b/output_0_split_3 (10, 512, 14, 14)
inception_4c/1x1 (10, 128, 14, 14)
inception_4c/3x3_reduce (10, 128, 14, 14)
inception_4c/3x3 (10, 256, 14, 14)
inception_4c/5x5_reduce (10, 24, 14, 14)
inception_4c/5x5 (10, 64, 14, 14)
inception_4c/pool (10, 512, 14, 14)
inception_4c/pool_proj (10, 64, 14, 14)
inception_4c/output (10, 512, 14, 14)
inception_4c/output_inception_4c/output_0_split_0 (10, 512, 14, 14)
inception_4c/output_inception_4c/output_0_split_1 (10, 512, 14, 14)
inception_4c/output_inception_4c/output_0_split_2 (10, 512, 14, 14)
inception_4c/output_inception_4c/output_0_split_3 (10, 512, 14, 14)
inception_4d/1x1 (10, 112, 14, 14)
inception_4d/3x3_reduce (10, 144, 14, 14)
inception_4d/3x3 (10, 288, 14, 14)
inception_4d/5x5_reduce (10, 32, 14, 14)
inception_4d/5x5 (10, 64, 14, 14)
inception_4d/pool (10, 512, 14, 14)
inception_4d/pool_proj (10, 64, 14, 14)
inception_4d/output (10, 528, 14, 14)
inception_4d/output_inception_4d/output_0_split_0 (10, 528, 14, 14)
inception_4d/output_inception_4d/output_0_split_1 (10, 528, 14, 14)
inception_4d/output_inception_4d/output_0_split_2 (10, 528, 14, 14)
inception_4d/output_inception_4d/output_0_split_3 (10, 528, 14, 14)
inception_4e/1x1 (10, 256, 14, 14)
inception_4e/3x3_reduce (10, 160, 14, 14)
inception_4e/3x3 (10, 320, 14, 14)
inception_4e/5x5_reduce (10, 32, 14, 14)
inception_4e/5x5 (10, 128, 14, 14)
inception_4e/pool (10, 528, 14, 14)
inception_4e/pool_proj (10, 128, 14, 14)
inception_4e/output (10, 832, 14, 14)
pool4/3x3_s2 (10, 832, 7, 7)
pool4/3x3_s2_pool4/3x3_s2_0_split_0 (10, 832, 7, 7)
pool4/3x3_s2_pool4/3x3_s2_0_split_1 (10, 832, 7, 7)
pool4/3x3_s2_pool4/3x3_s2_0_split_2 (10, 832, 7, 7)
pool4/3x3_s2_pool4/3x3_s2_0_split_3 (10, 832, 7, 7)
inception_5a/1x1 (10, 256, 7, 7)
inception_5a/3x3_reduce (10, 160, 7, 7)
inception_5a/3x3 (10, 320, 7, 7)
inception_5a/5x5_reduce (10, 32, 7, 7)
inception_5a/5x5 (10, 128, 7, 7)
inception_5a/pool (10, 832, 7, 7)
inception_5a/pool_proj (10, 128, 7, 7)
inception_5a/output (10, 832, 7, 7)
inception_5a/output_inception_5a/output_0_split_0 (10, 832, 7, 7)
inception_5a/output_inception_5a/output_0_split_1 (10, 832, 7, 7)
inception_5a/output_inception_5a/output_0_split_2 (10, 832, 7, 7)
inception_5a/output_inception_5a/output_0_split_3 (10, 832, 7, 7)
inception_5b/1x1 (10, 384, 7, 7)
inception_5b/3x3_reduce (10, 192, 7, 7)
inception_5b/3x3 (10, 384, 7, 7)
inception_5b/5x5_reduce (10, 48, 7, 7)
inception_5b/5x5 (10, 128, 7, 7)
inception_5b/pool (10, 832, 7, 7)
inception_5b/pool_proj (10, 128, 7, 7)
inception_5b/output (10, 1024, 7, 7)
pool5/7x7_s1 (10, 1024, 1, 1)
loss3/classifier (10, 6)
prob (10, 6)
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import glob
%matplotlib inline
plt.rcParams['figure.figsize'] = (10, 10)
class_map = pd.read_csv('../gen/class_map.csv', index_col=0)
class_map
class | name | |
---|---|---|
0 | 1 | 哈士奇 |
1 | 2 | 拉布拉多 |
2 | 3 | 博美 |
3 | 4 | 柴犬 |
4 | 5 | 德国牧羊犬 |
5 | 6 | 杜宾 |
predict_dir = '../abu'
img_list = glob.glob(predict_dir + '/*.jpeg')
len(img_list)
22
error_prob = []
for img in img_list:
image = caffe.io.load_image(img)
transformed_image = transformer.preprocess('data', image)
plt.imshow(image)
plt.show()
net.blobs['data'].data[...] = transformed_image
output = net.forward()
output_prob = output['prob'][0]
print('predicted class is:{}'.format(class_map[class_map['class'] == output_prob.argmax()].name.values[0]))
if output_prob.argmax() != 2:
error_prob.append(img)
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 德国牧羊犬
predicted class is: 博美
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 杜宾
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 杜宾
predicted class is: 拉布拉多
predicted class is: 拉布拉多
predicted class is: 拉布拉多
accuary = (len(img_list) - len(error_prob))/float(len(img_list))
accuary
0.8181818181818182
for img in error_prob:
try:
image = caffe.io.load_image(img)
except Exception:
continue
transformed_image = transformer.preprocess('data', image)
plt.imshow(image)
plt.show()
net.blobs['data'].data[...] = transformed_image
output = net.forward()
output_prob = output['prob'][0]
top_inds = output_prob.argsort()[::-1]
for rank, ind in enumerate(top_inds, 1):
print('probabilities rank {} label is {}'.format(rank, class_map[class_map['class'] == ind].name.values[0]))
probabilities rank 1 label is 德国牧羊犬
probabilities rank 2 label is 杜宾
probabilities rank 3 label is 拉布拉多
probabilities rank 4 label is 柴犬
probabilities rank 5 label is 博美
probabilities rank 6 label is 哈士奇
probabilities rank 1 label is 博美
probabilities rank 2 label is 柴犬
probabilities rank 3 label is 拉布拉多
probabilities rank 4 label is 哈士奇
probabilities rank 5 label is 杜宾
probabilities rank 6 label is 德国牧羊犬
probabilities rank 1 label is 杜宾
probabilities rank 2 label is 德国牧羊犬
probabilities rank 3 label is 柴犬
probabilities rank 4 label is 哈士奇
probabilities rank 5 label is 拉布拉多
probabilities rank 6 label is 博美
probabilities rank 1 label is 杜宾
probabilities rank 2 label is 拉布拉多
probabilities rank 3 label is 德国牧羊犬
probabilities rank 4 label is 柴犬
probabilities rank 5 label is 博美
probabilities rank 6 label is 哈士奇