Software author: Brian Williamson
Methodology authors: Brian Williamson, Peter Gilbert, Noah Simon, Marco Carone
R package: https://github.com/bdwilliamson/vimp
In predictive modeling applications, it is often of interest to determine the relative contribution of subsets of features in explaining an outcome; this is often called variable importance. It is useful to consider variable importance as a function of the unknown, underlying data-generating mechanism rather than the specific predictive algorithm used to fit the data. This package provides functions that, given fitted values from predictive algorithms, compute nonparametric estimates of variable importance based on
For more details, please see the accompanying manuscripts "Nonparametric variable importance assessment using machine learning techniques" by Williamson, Gilbert, Carone, and Simon (Biometrics, 2020), "A unified approach for inference on algorithm-agnostic variable importance" by Williamson, Gilbert, Simon, and Carone (arXiv, 2020), and "Efficient nonparametric statistical inference on population feature importance using Shapley values" by Williamson and Feng (arXiv, 2020; to appear in the Proceedings of the Thirty-seventh International Conference on Machine Learning [ICML 2020]).
You may install a stable release of vimpy
using pip
by running python pip install vimpy
from a Terminal window. Alternatively, you may install within a virtualenv
environment.
You may install the current dev release of vimpy
by downloading this repository directly.
If you encounter any bugs or have any specific feature requests, please file an issue.
This example shows how to use vimpy
in a simple setting with simulated data and using a single regression function. For more examples and detailed explanation, please see the R
vignette.
## load required libraries
import numpy as np
import vimpy
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.model_selection import GridSearchCV
## -------------------------------------------------------------
## problem setup
## -------------------------------------------------------------
## define a function for the conditional mean of Y given X
def cond_mean(x = None):
f1 = np.where(np.logical_and(-2 <= x[:, 0], x[:, 0] < 2), np.floor(x[:, 0]), 0)
f2 = np.where(x[:, 1] <= 0, 1, 0)
f3 = np.where(x[:, 2] > 0, 1, 0)
f6 = np.absolute(x[:, 5]/4) ** 3
f7 = np.absolute(x[:, 6]/4) ** 5
f11 = (7./3)*np.cos(x[:, 10]/2)
ret = f1 + f2 + f3 + f6 + f7 + f11
return ret
## create data
np.random.seed(4747)
n = 100
p = 15
s = 1 # importance desired for X_1
x = np.zeros((n, p))
for i in range(0, x.shape[1]) :
x[:,i] = np.random.normal(0, 2, n)
y = cond_mean(x) + np.random.normal(0, 1, n)
## -------------------------------------------------------------
## preliminary step: get regression estimators
## -------------------------------------------------------------
## use grid search to get optimal number of trees and learning rate
ntrees = np.arange(100, 500, 100)
lr = np.arange(.01, .1, .05)
param_grid = [{'n_estimators':ntrees, 'learning_rate':lr}]
## set up cv objects
cv_full = GridSearchCV(GradientBoostingRegressor(loss = 'ls', max_depth = 1), param_grid = param_grid, cv = 5)
cv_small = GridSearchCV(GradientBoostingRegressor(loss = 'ls', max_depth = 1), param_grid = param_grid, cv = 5)
## -------------------------------------------------------------
## get variable importance estimates
## -------------------------------------------------------------
# set seed
np.random.seed(12345)
## set up the vimp object
vimp = vimpy.vim(y = y, x = x, s = 1, pred_func = cv_full, measure_type = "r_squared")
## get the point estimate of variable importance
vimp.get_point_est()
## get the influence function estimate
vimp.get_influence_function()
## get a standard error
vimp.get_se()
## get a confidence interval
vimp.get_ci()
## do a hypothesis test, compute p-value
vimp.hypothesis_test(alpha = 0.05, delta = 0)
## display the estimates, etc.
vimp.vimp_
vimp.se_
vimp.ci_
vimp.p_value_
vimp.hyp_test_
## -------------------------------------------------------------
## using precomputed fitted values
## -------------------------------------------------------------
np.random.seed(12345)
folds_outer = np.random.choice(a = np.arange(2), size = n, replace = True, p = np.array([0.5, 0.5]))
## fit the full regression
cv_full.fit(x[folds_outer == 1, :], y[folds_outer == 1])
full_fit = cv_full.best_estimator_.predict(x[folds_outer == 1, :])
## fit the reduced regression
x_small = np.delete(x[folds_outer == 0, :], s, 1) # delete the columns in s
cv_small.fit(x_small, y[folds_outer == 0])
small_fit = cv_small.best_estimator_.predict(x_small)
## get variable importance estimates
np.random.seed(12345)
vimp_precompute = vimpy.vim(y = y, x = x, s = 1, f = full_fit, r = small_fit, measure_type = "r_squared", folds = folds_outer)
## get the point estimate of variable importance
vimp_precompute.get_point_est()
## get the influence function estimate
vimp_precompute.get_influence_function()
## get a standard error
vimp_precompute.get_se()
## get a confidence interval
vimp_precompute.get_ci()
## do a hypothesis test, compute p-value
vimp_precompute.hypothesis_test(alpha = 0.05, delta = 0)
## display the estimates, etc.
vimp_precompute.vimp_
vimp_precompute.se_
vimp_precompute.ci_
vimp_precompute.p_value_
vimp_precompute.hyp_test_
## -------------------------------------------------------------
## get variable importance estimates using cross-validation
## -------------------------------------------------------------
np.random.seed(12345)
## set up the vimp object
vimp_cv = vimpy.cv_vim(y = y, x = x, s = 1, pred_func = cv_full, V = 5, measure_type = "r_squared")
## get the point estimate
vimp_cv.get_point_est()
## get the standard error
vimp_cv.get_influence_function()
vimp_cv.get_se()
## get a confidence interval
vimp_cv.get_ci()
## do a hypothesis test, compute p-value
vimp_cv.hypothesis_test(alpha = 0.05, delta = 0)
## display estimates, etc.
vimp_cv.vimp_
vimp_cv.se_
vimp_cv.ci_
vimp_cv.p_value_
vimp_cv.hyp_test_
The logo was created using hexSticker, lisa, and a python image distributed under the CC0 license. Many thanks to the maintainers of these packages and the Color Lisa team.