forked from gpuweb/gpuweb
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
wgsl: Add tests for shared entry point IO structs (gpuweb#812)
* wgsl: Add tests for shared entry point IO structs Test that a structure containing entry point IO attributes can be shared between different shader stages, between shader and non-shader functions, and between entry points and buffers. * Address review comments
- Loading branch information
Showing
1 changed file
with
349 additions
and
0 deletions.
There are no files selected for viewing
349 changes: 349 additions & 0 deletions
349
src/webgpu/shader/execution/shader_io/shared_structs.spec.ts
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,349 @@ | ||
export const description = `Test the shared use of structures containing entry point IO attributes`; | ||
|
||
import { makeTestGroup } from '../../../../common/framework/test_group.js'; | ||
import { GPUTest } from '../../../gpu_test.js'; | ||
import { checkElementsEqual } from '../../../util/check_contents.js'; | ||
|
||
export const g = makeTestGroup(GPUTest); | ||
|
||
g.test('shared_with_buffer') | ||
.desc( | ||
`Test sharing an entry point IO struct with a buffer. | ||
This test defines a structure that contains both builtin attributes and layout attributes, | ||
and uses that structure as both an entry point input and the store type of a storage buffer. | ||
The builtin attributes should be ignored when used for the storage buffer, and the layout | ||
attributes should be ignored when used as an entry point IO parameter. | ||
` | ||
) | ||
.fn(async t => { | ||
// Set the dispatch parameters such that we get some interesting (non-zero) built-in variables. | ||
const wgsize = new Uint32Array([8, 4, 2]); | ||
const numGroups = new Uint32Array([4, 2, 8]); | ||
|
||
// Pick a single invocation to copy the input structure to the output buffer. | ||
const targetLocalIndex = 13; | ||
const targetGroup = new Uint32Array([2, 1, 5]); | ||
|
||
// The test shader defines a structure that contains members decorated with built-in variable | ||
// attributes, and also layout attributes for the storage buffer. | ||
const wgsl = ` | ||
[[block]] | ||
struct S { | ||
/* byte offset: 0 */ [[size(32)]] [[builtin(workgroup_id)]] group_id : vec3<u32>; | ||
/* byte offset: 32 */ [[builtin(local_invocation_index)]] local_index : u32; | ||
/* byte offset: 64 */ [[align(64)]] [[builtin(num_workgroups)]] numGroups : vec3<u32>; | ||
}; | ||
[[group(0), binding(0)]] | ||
var<storage, read_write> outputs : S; | ||
[[stage(compute), workgroup_size(${wgsize[0]}, ${wgsize[1]}, ${wgsize[2]})]] | ||
fn main(inputs : S) { | ||
if (inputs.group_id.x == ${targetGroup[0]}u && | ||
inputs.group_id.y == ${targetGroup[1]}u && | ||
inputs.group_id.z == ${targetGroup[2]}u && | ||
inputs.local_index == ${targetLocalIndex}u) { | ||
outputs = inputs; | ||
} | ||
} | ||
`; | ||
|
||
const pipeline = t.device.createComputePipeline({ | ||
compute: { | ||
module: t.device.createShaderModule({ code: wgsl }), | ||
entryPoint: 'main', | ||
}, | ||
}); | ||
|
||
// Allocate a buffer to hold the output structure. | ||
const bufferNumElements = 32; | ||
const outputBuffer = t.device.createBuffer({ | ||
size: bufferNumElements * Uint32Array.BYTES_PER_ELEMENT, | ||
usage: GPUBufferUsage.STORAGE | GPUBufferUsage.COPY_SRC, | ||
}); | ||
const bindGroup = t.device.createBindGroup({ | ||
layout: pipeline.getBindGroupLayout(0), | ||
entries: [{ binding: 0, resource: { buffer: outputBuffer } }], | ||
}); | ||
|
||
// Run the shader. | ||
const encoder = t.device.createCommandEncoder(); | ||
const pass = encoder.beginComputePass(); | ||
pass.setPipeline(pipeline); | ||
pass.setBindGroup(0, bindGroup); | ||
pass.dispatch(numGroups[0], numGroups[1], numGroups[2]); | ||
pass.endPass(); | ||
t.queue.submit([encoder.finish()]); | ||
|
||
// Check the output values. | ||
const checkOutput = (outputs: Uint32Array) => { | ||
if (checkElementsEqual(outputs.slice(0, 3), targetGroup)) { | ||
return new Error( | ||
`group_id comparison failed\n` + | ||
` expected: ${targetGroup}\n` + | ||
` got: ${outputs.slice(0, 3)}` | ||
); | ||
} | ||
if (outputs[8] !== targetLocalIndex) { | ||
return new Error( | ||
`local_index comparison failed\n` + | ||
` expected: ${targetLocalIndex}\n` + | ||
` got: ${outputs[8]}` | ||
); | ||
} | ||
if (checkElementsEqual(outputs.slice(16, 19), numGroups)) { | ||
return new Error( | ||
`numGroups comparison failed\n` + | ||
` expected: ${numGroups}\n` + | ||
` got: ${outputs.slice(16, 19)}` | ||
); | ||
} | ||
return undefined; | ||
}; | ||
t.expectGPUBufferValuesPassCheck(outputBuffer, outputData => checkOutput(outputData), { | ||
type: Uint32Array, | ||
typedLength: bufferNumElements, | ||
}); | ||
}); | ||
|
||
g.test('shared_between_stages') | ||
.desc( | ||
`Test sharing an entry point IO struct between different pipeline stages. | ||
This test defines an entry point IO structure, and uses it as both the output of a vertex | ||
shader and the input to a fragment shader. | ||
` | ||
) | ||
.fn(async t => { | ||
const size = [31, 31]; | ||
const wgsl = ` | ||
struct Interface { | ||
[[builtin(position)]] position : vec4<f32>; | ||
[[location(0)]] color : f32; | ||
}; | ||
var<private> vertices : array<vec2<f32>, 3> = array<vec2<f32>, 3>( | ||
vec2<f32>(-0.7, -0.7), | ||
vec2<f32>( 0.0, 0.7), | ||
vec2<f32>( 0.7, -0.7), | ||
); | ||
[[stage(vertex)]] | ||
fn vert_main([[builtin(vertex_index)]] index : u32) -> Interface { | ||
return Interface(vec4<f32>(vertices[index], 0.0, 1.0), 0.5); | ||
} | ||
[[stage(fragment)]] | ||
fn frag_main(inputs : Interface) -> [[location(0)]] vec4<f32> { | ||
// Toggle red vs green based on the x position. | ||
var color = vec4<f32>(0.0, 0.0, 0.0, 1.0); | ||
if (inputs.position.x > f32(${size[0] / 2})) { | ||
color.r = inputs.color; | ||
} else { | ||
color.g = inputs.color; | ||
} | ||
return color; | ||
} | ||
`; | ||
|
||
// Set up the render pipeline. | ||
const module = t.device.createShaderModule({ code: wgsl }); | ||
const pipeline = t.device.createRenderPipeline({ | ||
vertex: { | ||
module, | ||
entryPoint: 'vert_main', | ||
}, | ||
fragment: { | ||
module, | ||
entryPoint: 'frag_main', | ||
targets: [ | ||
{ | ||
format: 'rgba8unorm', | ||
}, | ||
], | ||
}, | ||
}); | ||
|
||
// Draw a red triangle. | ||
const renderTarget = t.device.createTexture({ | ||
size, | ||
usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.COPY_SRC, | ||
format: 'rgba8unorm', | ||
}); | ||
const encoder = t.device.createCommandEncoder(); | ||
const pass = encoder.beginRenderPass({ | ||
colorAttachments: [ | ||
{ | ||
view: renderTarget.createView(), | ||
loadValue: [0, 0, 0, 0], | ||
storeOp: 'store', | ||
}, | ||
], | ||
}); | ||
pass.setPipeline(pipeline); | ||
pass.draw(3); | ||
pass.endPass(); | ||
t.queue.submit([encoder.finish()]); | ||
|
||
// Test a few points to make sure we rendered a half-red/half-green triangle. | ||
const redPixel = new Uint8Array([128, 0, 0, 255]); | ||
const greenPixel = new Uint8Array([0, 128, 0, 255]); | ||
for (const p of [ | ||
{ x: 16, y: 15 }, | ||
{ x: 16, y: 15 }, | ||
{ x: 22, y: 20 }, | ||
]) { | ||
t.expectSinglePixelIn2DTexture(renderTarget, 'rgba8unorm', p, { | ||
exp: redPixel, | ||
}); | ||
} | ||
for (const p of [ | ||
{ x: 14, y: 15 }, | ||
{ x: 14, y: 8 }, | ||
{ x: 8, y: 20 }, | ||
]) { | ||
t.expectSinglePixelIn2DTexture(renderTarget, 'rgba8unorm', p, { | ||
exp: greenPixel, | ||
}); | ||
} | ||
const blackPixel = new Uint8Array([0, 0, 0, 0]); | ||
for (const p of [ | ||
{ x: 2, y: 2 }, | ||
{ x: 2, y: 28 }, | ||
{ x: 28, y: 2 }, | ||
{ x: 28, y: 28 }, | ||
]) { | ||
t.expectSinglePixelIn2DTexture(renderTarget, 'rgba8unorm', p, { | ||
exp: blackPixel, | ||
}); | ||
} | ||
}); | ||
|
||
g.test('shared_with_non_entry_point_function') | ||
.desc( | ||
`Test sharing an entry point IO struct with a non entry point function. | ||
This test defines structures that contain builtin and location attributes, and uses those | ||
structures as parameter and return types for entry point functions and regular functions. | ||
` | ||
) | ||
.fn(async t => { | ||
// The test shader defines structures that contain members decorated with built-in variable | ||
// attributes and user-defined IO. These structures are passed to and returned from regular | ||
// functions. | ||
const wgsl = ` | ||
struct Inputs { | ||
[[builtin(vertex_index)]] index : u32; | ||
[[location(0)]] color : vec4<f32>; | ||
}; | ||
struct Outputs { | ||
[[builtin(position)]] position : vec4<f32>; | ||
[[location(0)]] color : vec4<f32>; | ||
}; | ||
var<private> vertices : array<vec2<f32>, 3> = array<vec2<f32>, 3>( | ||
vec2<f32>(-0.7, -0.7), | ||
vec2<f32>( 0.0, 0.7), | ||
vec2<f32>( 0.7, -0.7), | ||
); | ||
fn process(in : Inputs) -> Outputs { | ||
var out : Outputs; | ||
out.position = vec4<f32>(vertices[in.index], 0.0, 1.0); | ||
out.color = in.color; | ||
return out; | ||
} | ||
[[stage(vertex)]] | ||
fn vert_main(inputs : Inputs) -> Outputs { | ||
return process(inputs); | ||
} | ||
[[stage(fragment)]] | ||
fn frag_main([[location(0)]] color : vec4<f32>) -> [[location(0)]] vec4<f32> { | ||
return color; | ||
} | ||
`; | ||
|
||
// Set up the render pipeline. | ||
const module = t.device.createShaderModule({ code: wgsl }); | ||
const pipeline = t.device.createRenderPipeline({ | ||
vertex: { | ||
module, | ||
entryPoint: 'vert_main', | ||
buffers: [ | ||
{ | ||
attributes: [ | ||
{ | ||
shaderLocation: 0, | ||
format: 'float32x4', | ||
offset: 0, | ||
}, | ||
], | ||
arrayStride: 4 * Float32Array.BYTES_PER_ELEMENT, | ||
}, | ||
], | ||
}, | ||
fragment: { | ||
module, | ||
entryPoint: 'frag_main', | ||
targets: [ | ||
{ | ||
format: 'rgba8unorm', | ||
}, | ||
], | ||
}, | ||
}); | ||
|
||
// Draw a triangle. | ||
// The vertex buffer contains the vertex colors (all red). | ||
const vertexBuffer = t.makeBufferWithContents( | ||
new Float32Array([1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0, 0.0, 1.0]), | ||
GPUBufferUsage.VERTEX | ||
); | ||
const renderTarget = t.device.createTexture({ | ||
size: [31, 31], | ||
usage: GPUTextureUsage.RENDER_ATTACHMENT | GPUTextureUsage.COPY_SRC, | ||
format: 'rgba8unorm', | ||
}); | ||
const encoder = t.device.createCommandEncoder(); | ||
const pass = encoder.beginRenderPass({ | ||
colorAttachments: [ | ||
{ | ||
view: renderTarget.createView(), | ||
loadValue: [0, 0, 0, 0], | ||
storeOp: 'store', | ||
}, | ||
], | ||
}); | ||
pass.setPipeline(pipeline); | ||
pass.setVertexBuffer(0, vertexBuffer); | ||
pass.draw(3); | ||
pass.endPass(); | ||
t.queue.submit([encoder.finish()]); | ||
|
||
// Test a few points to make sure we rendered a red triangle. | ||
const redPixel = new Uint8Array([255, 0, 0, 255]); | ||
for (const p of [ | ||
{ x: 15, y: 15 }, | ||
{ x: 15, y: 8 }, | ||
{ x: 8, y: 20 }, | ||
{ x: 22, y: 20 }, | ||
]) { | ||
t.expectSinglePixelIn2DTexture(renderTarget, 'rgba8unorm', p, { | ||
exp: redPixel, | ||
}); | ||
} | ||
const blackPixel = new Uint8Array([0, 0, 0, 0]); | ||
for (const p of [ | ||
{ x: 2, y: 2 }, | ||
{ x: 2, y: 28 }, | ||
{ x: 28, y: 2 }, | ||
{ x: 28, y: 28 }, | ||
]) { | ||
t.expectSinglePixelIn2DTexture(renderTarget, 'rgba8unorm', p, { | ||
exp: blackPixel, | ||
}); | ||
} | ||
}); |