-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
7204a28
commit 2f489f5
Showing
1 changed file
with
71 additions
and
71 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,86 +1,86 @@ | ||
export LinearSpike | ||
# export LinearSpike | ||
|
||
using Zygote | ||
using Random: default_rng | ||
# using Zygote | ||
# using Random: default_rng | ||
|
||
struct LinearSpike{T} | ||
W_mean :: Matrix{T} | ||
W_wstd :: Matrix{T} | ||
b_mean :: Vector{T} | ||
b_wstd :: Vector{T} | ||
zW :: Matrix{T} | ||
zb :: Vector{T} | ||
end | ||
@functor LinearSpike | ||
# struct LinearSpike{T} | ||
# W_mean :: Matrix{T} | ||
# W_wstd :: Matrix{T} | ||
# b_mean :: Vector{T} | ||
# b_wstd :: Vector{T} | ||
# zW :: Matrix{T} | ||
# zb :: Vector{T} | ||
# end | ||
# @functor LinearSpike | ||
|
||
function LinearSpike(p::Pair; initializer=(0,1), T=Float32, eps=convert(Float32, sqrt(2 / (p[1] + p[2]))), rng=default_rng()) | ||
return LinearSpike( | ||
initializer[1] .+ eps*randn(rng, T, p[2], p[1]), | ||
convert(T, log(exp(initializer[2])-1)) .+ eps*randn(rng, T, p[2], p[1]), | ||
initializer[1] .+ eps*randn(rng, T, p[2]), | ||
convert(T, log(exp(initializer[2])-1)) .+ eps*randn(rng, T, p[2]), | ||
zeros(T, p[2], p[1]), | ||
zeros(T, p[2]) | ||
) | ||
end | ||
# function LinearSpike(p::Pair; initializer=(0,1), T=Float32, eps=convert(Float32, sqrt(2 / (p[1] + p[2]))), rng=default_rng()) | ||
# return LinearSpike( | ||
# initializer[1] .+ eps*randn(rng, T, p[2], p[1]), | ||
# convert(T, log(exp(initializer[2])-1)) .+ eps*randn(rng, T, p[2], p[1]), | ||
# initializer[1] .+ eps*randn(rng, T, p[2]), | ||
# convert(T, log(exp(initializer[2])-1)) .+ eps*randn(rng, T, p[2]), | ||
# zeros(T, p[2], p[1]), | ||
# zeros(T, p[2]) | ||
# ) | ||
# end | ||
|
||
function (l::LinearSpike{T})(x; rng=default_rng()) where { T } | ||
# function (l::LinearSpike{T})(x; rng=default_rng()) where { T } | ||
|
||
zW = sigmoid.(l.zW) | ||
zb = sigmoid.(l.zb) | ||
# zW = sigmoid.(l.zW) | ||
# zb = sigmoid.(l.zb) | ||
|
||
W_mask = to_mask(zW)[:,:,1] | ||
b_mask = to_mask(zb)[:,1] | ||
# W_mask = to_mask(zW)[:,:,1] | ||
# b_mask = to_mask(zb)[:,1] | ||
|
||
W_std = softplus.(l.W_wstd) | ||
b_std = softplus.(l.b_wstd) | ||
W = (l.W_mean + W_std .* randn(rng, T, size(l.W_mean))) .* W_mask | ||
b = (l.b_mean + b_std .* randn(rng, T, size(l.b_mean))) .* b_mask | ||
return muladd(W, x, b) | ||
end | ||
# W_std = softplus.(l.W_wstd) | ||
# b_std = softplus.(l.b_wstd) | ||
# W = (l.W_mean + W_std .* randn(rng, T, size(l.W_mean))) .* W_mask | ||
# b = (l.b_mean + b_std .* randn(rng, T, size(l.b_mean))) .* b_mask | ||
# return muladd(W, x, b) | ||
# end | ||
|
||
function KL_loss(l::LinearSpike) | ||
# ASSUMES STANDARD NORMAL PRIOR AND VAGUE BERNOULLI | ||
W_var = softplus.(l.W_wstd).^2 | ||
b_var = softplus.(l.b_wstd).^2 | ||
zW = sigmoid.(l.zW) | ||
zb = sigmoid.(l.zb) | ||
# function KL_loss(l::LinearSpike) | ||
# # ASSUMES STANDARD NORMAL PRIOR AND VAGUE BERNOULLI | ||
# W_var = softplus.(l.W_wstd).^2 | ||
# b_var = softplus.(l.b_wstd).^2 | ||
# zW = sigmoid.(l.zW) | ||
# zb = sigmoid.(l.zb) | ||
|
||
kl_w = sum(zW .* KL_normals.(l.W_mean, W_var)) | ||
kl_b = sum(zb .* KL_normals.(l.b_mean, b_var)) | ||
kl_zW = sum(zW .* log.(zW) + (1 .- zW) .* log.(1 .- zW) .+ log(2)) | ||
kl_zb = sum(zb .* log.(zb) + (1 .- zb) .* log.(1 .- zb) .+ log(2)) | ||
return kl_w + kl_b + kl_zW + kl_zb | ||
end | ||
# kl_w = sum(zW .* KL_normals.(l.W_mean, W_var)) | ||
# kl_b = sum(zb .* KL_normals.(l.b_mean, b_var)) | ||
# kl_zW = sum(zW .* log.(zW) + (1 .- zW) .* log.(1 .- zW) .+ log(2)) | ||
# kl_zb = sum(zb .* log.(zb) + (1 .- zb) .* log.(1 .- zb) .+ log(2)) | ||
# return kl_w + kl_b + kl_zW + kl_zb | ||
# end | ||
|
||
function sample_gumbel(; epsilon=0.00000000001f0, T=Float32, rng=default_rng()) | ||
# ret = rand(Float32, size...) | ||
# ret = -log.(-log.(ret .+ epsilon) .+ epsilon) | ||
ret1 = -log(-log(rand(rng, T) + epsilon) + epsilon) | ||
ret2 = -log(-log(rand(rng, T) + epsilon) + epsilon) | ||
return ret1, ret2 | ||
end | ||
# function sample_gumbel(; epsilon=0.00000000001f0, T=Float32, rng=default_rng()) | ||
# # ret = rand(Float32, size...) | ||
# # ret = -log.(-log.(ret .+ epsilon) .+ epsilon) | ||
# ret1 = -log(-log(rand(rng, T) + epsilon) + epsilon) | ||
# ret2 = -log(-log(rand(rng, T) + epsilon) + epsilon) | ||
# return ret1, ret2 | ||
# end | ||
|
||
function sample_one_hot(p; epsilon=0.00000000001f0, tau=0.1f0) | ||
# logits = log.([p, 1-p] .+ epsilon) | ||
# y = logits + sample_gumbel(2, epsilon = epsilon) | ||
y = (log(p + epsilon), log(1 - p + epsilon)) .+ sample_gumbel(epsilon = epsilon) | ||
y_soft = UnboundedBNN.softmax([y ./ tau...]) | ||
y_hard = (y_soft .== maximum(y_soft)) | ||
ret = y_hard - Zygote.ChainRulesCore.ignore_derivatives(y_soft) + y_soft # return y_hard, but propagate gradients through y_soft | ||
return ret | ||
end | ||
# function sample_one_hot(p; epsilon=0.00000000001f0, tau=0.1f0) | ||
# # logits = log.([p, 1-p] .+ epsilon) | ||
# # y = logits + sample_gumbel(2, epsilon = epsilon) | ||
# y = (log(p + epsilon), log(1 - p + epsilon)) .+ sample_gumbel(epsilon = epsilon) | ||
# y_soft = UnboundedBNN.softmax([y ./ tau...]) | ||
# y_hard = (y_soft .== maximum(y_soft)) | ||
# ret = y_hard - Zygote.ChainRulesCore.ignore_derivatives(y_soft) + y_soft # return y_hard, but propagate gradients through y_soft | ||
# return ret | ||
# end | ||
|
||
function to_mask(p; T=Float32, epsilon=0.00000000001f0, tau=0.1f0, rng=default_rng()) | ||
g1 = -log.(-log.(rand(rng, T, size(p)) .+ epsilon) .+ epsilon) | ||
g2 = -log.(-log.(rand(rng, T, size(p)) .+ epsilon) .+ epsilon) | ||
# function to_mask(p; T=Float32, epsilon=0.00000000001f0, tau=0.1f0, rng=default_rng()) | ||
# g1 = -log.(-log.(rand(rng, T, size(p)) .+ epsilon) .+ epsilon) | ||
# g2 = -log.(-log.(rand(rng, T, size(p)) .+ epsilon) .+ epsilon) | ||
|
||
y1 = (g1 .+ log.(p .+ epsilon)) ./ tau | ||
y2 = (g2 .+ log.(1 .- p .+ epsilon)) ./ tau | ||
# y1 = (g1 .+ log.(p .+ epsilon)) ./ tau | ||
# y2 = (g2 .+ log.(1 .- p .+ epsilon)) ./ tau | ||
|
||
y_soft = softmax(cat(y1, y2; dims=ndims(y1)+1), dims=ndims(y1)+1) | ||
y_hard = (y_soft .== maximum(y_soft, dims=ndims(y1)+1)) | ||
ret = y_hard - Zygote.ChainRulesCore.ignore_derivatives(y_soft) + y_soft # return y_hard, but propagate gradients through y_soft | ||
return ret | ||
# y_soft = softmax(cat(y1, y2; dims=ndims(y1)+1), dims=ndims(y1)+1) | ||
# y_hard = (y_soft .== maximum(y_soft, dims=ndims(y1)+1)) | ||
# ret = y_hard - Zygote.ChainRulesCore.ignore_derivatives(y_soft) + y_soft # return y_hard, but propagate gradients through y_soft | ||
# return ret | ||
|
||
end | ||
# end |