Bone X-Ray Deep Learning Competition. Read more here.
This was my first attempt at this challenge, I used Xception architecture for this and received a Cappa score of 0.687
on the test set. Leaderboard Model name: xception(single model) bimal
Xception model received an accracy of 83%
on the Validation set.
===== ELBOW ======
roc_auc_score: 0.8655411655874191
Sensitivity: 0.9702127659574468
Specificity: 0.7608695652173914
Cohen-Cappa-Score: 0.7327090673094752
F1 Score: 0.8803088803088802
===== FINGER ======
roc_auc_score: 0.7782454879110069
Sensitivity: 0.8925233644859814
Specificity: 0.6639676113360324
Cohen-Cappa-Score: 0.546259842519685
F1 Score: 0.7827868852459016
===== FOREARM ======
roc_auc_score: 0.8475496688741722
Sensitivity: 0.96
Specificity: 0.7350993377483444
Cohen-Cappa-Score: 0.6945780209114572
F1 Score: 0.8622754491017965
===== HAND ======
roc_auc_score: 0.7469005642437376
Sensitivity: 0.959409594095941
Specificity: 0.5343915343915344
Cohen-Cappa-Score: 0.5262369439474013
F1 Score: 0.840064620355412
===== HUMERUS ======
roc_auc_score: 0.8754826254826255
Sensitivity: 0.8581081081081081
Specificity: 0.8928571428571429
Cohen-Cappa-Score: 0.7500964134207482
F1 Score: 0.8758620689655172
===== SHOULDER ======
roc_auc_score: 0.7810299129117759
Sensitivity: 0.8210526315789474
Specificity: 0.7410071942446043
Cohen-Cappa-Score: 0.5625817210210153
F1 Score: 0.7918781725888325
===== WRIST ======
roc_auc_score: 0.8414648910411623
Sensitivity: 0.9642857142857143
Specificity: 0.7186440677966102
Cohen-Cappa-Score: 0.6986424046110609
F1 Score: 0.8796992481203008
-
Clone this project.
-
Download the dataset from the competetion home page and place it in the cloned project directory. For example:
Musculoskeletal-Radiographs-abnormality-detection/
-
Run the
main_train.ipynb
.
pip install tensorflow-gpu
pip install keras
pip install scipy
pip install sklearn
pip install pandas
pip install numpy
pip install jupyter
Neural Net was trained in AWS using the p2.xlarge
instance, I have created an AMI which comes with all of the above dependencies installed. AMI-ID: ami-0337b3fba4a212c7f
, make sure you've selected the Ireland
region if you decide to use this AMI.
-
src/data/dataloader.py
: Filters out normal and abnormal x-ray images and adds them to their own directories for kerasImageDataGenerator.flow_from_directory()
. For exampletrain/normal/
andtrain/abnormal/
-
src/data/postprocessor.py
: Avergaes out the probablities of images per patient study type. -
src/model/*
: Creates aXception
orDense169
neural network model -
src/predict.py
: Run this when ready for submission. Note: Change the value of thetrained_model_path
variable.