Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[test] remove test skip on macos, since brainpylib supports taichi interface on macos #597

Merged
merged 3 commits into from
Jan 20, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion brainpy/_src/dyn/synapses/delay_couplings.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,7 +64,7 @@ def __init__(
self.output_var = var_to_output

# Connection matrix
self.conn_mat = bm.asarray(conn_mat)
self.conn_mat = conn_mat
if self.conn_mat.shape != required_shape:
raise ValueError(f'we expect the structural connection matrix has the shape of '
f'(pre.num, post.num), i.e., {required_shape}, '
Expand Down
210 changes: 0 additions & 210 deletions brainpy/_src/math/event/tests/test_event_csrmv_taichi.py
Original file line number Diff line number Diff line change
@@ -1,24 +1,14 @@
# -*- coding: utf-8 -*-


import sys
from functools import partial

import jax
import pytest
from absl.testing import parameterized

import brainpy as bp
import brainpy.math as bm

# pytestmark = pytest.mark.skip(reason="Skipped due to pytest limitations, manual execution required for testing.")

is_manual_test = False
if sys.platform.startswith('darwin') and not is_manual_test:
pytest.skip('brainpy.math package may need manual tests.', allow_module_level=True)

# bm.set_platform('cpu')

seed = 1234


Expand All @@ -38,206 +28,6 @@ def func(*args, **kwargs):
return func


# ### MANUAL TESTS ###

# transposes = [True, False]
# shapes = [(100, 200),
# (200, 200),
# (200, 100),
# (10, 1000),
# # (2, 10000),
# # (1000, 10),
# # (10000, 2)
# ]
# homo_datas = [-1., 0., 1.]

# def test_homo(shape, transpose, homo_data):
# print(f'test_homo: shape = {shape}, transpose = {transpose}, homo_data = {homo_data}')
# rng = bm.random.RandomState()
# indices, indptr = bp.conn.FixedProb(0.4)(*shape).require('pre2post')
# events = rng.random(shape[0] if transpose else shape[1]) < 0.1
# heter_data = bm.ones(indices.shape) * homo_data

# r1 = bm.event.csrmv(homo_data, indices, indptr, events, shape=shape, transpose=transpose)
# r2 = bm.event.csrmv_taichi(homo_data, indices, indptr, events, shape=shape, transpose=transpose)

# assert (bm.allclose(r1, r2[0]))

# bm.clear_buffer_memory()


# def test_homo_vmap(shape, transpose, homo_data):
# print(f'test_homo_vamp: shape = {shape}, transpose = {transpose}, homo_data = {homo_data}')

# rng = bm.random.RandomState()
# indices, indptr = bp.conn.FixedProb(0.4)(*shape).require('pre2post')

# # vmap 'data'
# events = bm.as_jax(rng.random(shape[0] if transpose else shape[1])) < 0.1
# f1 = jax.vmap(partial(bm.event.csrmv, indices=indices, indptr=indptr, events=events,
# shape=shape, transpose=transpose))
# f2 = jax.vmap(partial(bm.event.csrmv_taichi, indices=indices, indptr=indptr, events=events,
# shape=shape, transpose=transpose))
# vmap_data = bm.as_jax([homo_data] * 10)
# assert(bm.allclose(f1(vmap_data), f2(vmap_data)[0]))

# # vmap 'events'
# f3 = jax.vmap(partial(bm.event.csrmv, homo_data, indices, indptr,
# shape=shape, transpose=transpose))
# f4 = jax.vmap(partial(bm.event.csrmv_taichi, homo_data, indices, indptr,
# shape=shape, transpose=transpose))
# vmap_data = bm.as_jax(rng.random((10, shape[0] if transpose else shape[1]))) < 0.1
# assert(bm.allclose(f3(vmap_data), f4(vmap_data)[0]))

# # vmap 'data' and 'events'
# f5 = jax.vmap(lambda dd, ee: bm.event.csrmv(dd, indices, indptr, ee, shape=shape, transpose=transpose))
# f6 = jax.vmap(lambda dd, ee: bm.event.csrmv_taichi(dd, indices, indptr, ee, shape=shape, transpose=transpose))

# vmap_data1 = bm.as_jax([homo_data] * 10)
# vmap_data2 = bm.as_jax(rng.random((10, shape[0] if transpose else shape[1]))) < 0.2
# assert(bm.allclose(f5(vmap_data1, vmap_data2),
# f6(vmap_data1, vmap_data2)[0]))

# bm.clear_buffer_memory()


# def test_homo_grad(shape, transpose, homo_data):
# print(f'test_homo_grad: shape = {shape}, transpose = {transpose}, homo_data = {homo_data}')

# rng = bm.random.RandomState()
# indices, indptr = bp.conn.FixedProb(0.4)(*shape).require('pre2post')
# indices = bm.as_jax(indices)
# indptr = bm.as_jax(indptr)
# events = bm.as_jax(rng.random(shape[0] if transpose else shape[1])) < 0.1
# dense_conn = bm.sparse.csr_to_dense(bm.ones(indices.shape).value, indices, indptr, shape=shape)

# # grad 'data'
# r1 = jax.grad(sum_op(bm.event.csrmv))(
# homo_data, indices, indptr, events, shape=shape, transpose=transpose)
# r2 = jax.grad(sum_op2(bm.event.csrmv_taichi))(
# homo_data, indices, indptr, events, shape=shape, transpose=transpose)
# assert(bm.allclose(r1, r2))

# # grad 'events'
# r3 = jax.grad(sum_op(bm.event.csrmv), argnums=3)(
# homo_data, indices, indptr, events.astype(float), shape=shape, transpose=transpose)
# r4 = jax.grad(sum_op2(bm.event.csrmv_taichi), argnums=3)(
# homo_data, indices, indptr, events.astype(float), shape=shape, transpose=transpose)
# assert(bm.allclose(r3, r4))

# bm.clear_buffer_memory()


# def test_heter(shape, transpose):
# print(f'test_heter: shape = {shape}, transpose = {transpose}')
# rng = bm.random.RandomState()
# indices, indptr = bp.conn.FixedProb(0.4)(*shape).require('pre2post')
# indices = bm.as_jax(indices)
# indptr = bm.as_jax(indptr)
# events = bm.as_jax(rng.random(shape[0] if transpose else shape[1])) < 0.1
# heter_data = bm.as_jax(rng.random(indices.shape))

# r1 = bm.event.csrmv(heter_data, indices, indptr, events,
# shape=shape, transpose=transpose)
# r2 = bm.event.csrmv_taichi(heter_data, indices, indptr, events,
# shape=shape, transpose=transpose)

# assert(bm.allclose(r1, r2[0]))

# bm.clear_buffer_memory()


# def test_heter_vmap(shape, transpose):
# print(f'test_heter_vamp: shape = {shape}, transpose = {transpose}')

# rng = bm.random.RandomState()
# indices, indptr = bp.conn.FixedProb(0.4)(*shape).require('pre2post')
# indices = bm.as_jax(indices)
# indptr = bm.as_jax(indptr)

# # vmap 'data'
# events = bm.as_jax(rng.random(shape[0] if transpose else shape[1])) < 0.1
# f1 = jax.vmap(partial(bm.event.csrmv, indices=indices, indptr=indptr, events=events,
# shape=shape, transpose=transpose))
# f2 = jax.vmap(partial(bm.event.csrmv_taichi, indices=indices, indptr=indptr, events=events,
# shape=shape, transpose=transpose))
# vmap_data = bm.as_jax(rng.random((10, indices.shape[0])))
# assert(bm.allclose(f1(vmap_data), f2(vmap_data)[0]))

# # vmap 'events'
# data = bm.as_jax(rng.random(indices.shape))
# f3 = jax.vmap(partial(bm.event.csrmv, data, indices, indptr,
# shape=shape, transpose=transpose))
# f4 = jax.vmap(partial(bm.event.csrmv_taichi, data, indices, indptr,
# shape=shape, transpose=transpose))
# vmap_data = bm.as_jax(rng.random((10, shape[0] if transpose else shape[1]))) < 0.1
# assert(bm.allclose(f3(vmap_data), f4(vmap_data)[0]))

# # vmap 'data' and 'events'
# f5 = jax.vmap(lambda dd, ee: bm.event.csrmv(dd, indices, indptr, ee,
# shape=shape, transpose=transpose))
# f6 = jax.vmap(lambda dd, ee: bm.event.csrmv_taichi(dd, indices, indptr, ee,
# shape=shape, transpose=transpose))
# vmap_data1 = bm.as_jax(rng.random((10, indices.shape[0])))
# vmap_data2 = bm.as_jax(rng.random((10, shape[0] if transpose else shape[1]))) < 0.2
# assert(bm.allclose(f5(vmap_data1, vmap_data2),
# f6(vmap_data1, vmap_data2)[0]))

# bm.clear_buffer_memory()


# def test_heter_grad(shape, transpose):
# print(f'test_heter_grad: shape = {shape}, transpose = {transpose}')

# rng = bm.random.RandomState()
# indices, indptr = bp.conn.FixedProb(0.4)(*shape).require('pre2post')
# indices = bm.as_jax(indices)
# indptr = bm.as_jax(indptr)
# events = rng.random(shape[0] if transpose else shape[1]) < 0.1
# events = bm.as_jax(events)
# dense_conn = bm.sparse.csr_to_dense(bm.ones(indices.shape).value, indices, indptr, shape=shape)

# # grad 'data'
# data = bm.as_jax(rng.random(indices.shape))
# r1 = jax.grad(sum_op(bm.event.csrmv))(
# data, indices, indptr, events, shape=shape, transpose=transpose)
# r2 = jax.grad(sum_op2(bm.event.csrmv_taichi))(
# data, indices, indptr, events, shape=shape, transpose=transpose)
# assert(bm.allclose(r1, r2))

# # grad 'events'
# r3 = jax.grad(sum_op(bm.event.csrmv), argnums=3)(
# data, indices, indptr, events.astype(float), shape=shape, transpose=transpose)
# r4 = jax.grad(sum_op2(bm.event.csrmv_taichi), argnums=3)(
# data, indices, indptr, events.astype(float), shape=shape, transpose=transpose)
# assert(bm.allclose(r3, r4))

# r5 = jax.grad(sum_op(bm.event.csrmv), argnums=(0, 3))(
# data, indices, indptr, events.astype(float), shape=shape, transpose=transpose)
# r6 = jax.grad(sum_op2(bm.event.csrmv_taichi), argnums=(0, 3))(
# data, indices, indptr, events.astype(float), shape=shape, transpose=transpose)
# assert(bm.allclose(r5[0], r6[0]))
# assert(bm.allclose(r5[1], r6[1]))

# bm.clear_buffer_memory()

# def test_all():
# for transpose in transposes:
# for shape in shapes:
# for homo_data in homo_datas:
# test_homo(shape, transpose, homo_data)
# test_homo_vmap(shape, transpose, homo_data)
# test_homo_grad(shape, transpose, homo_data)

# for transpose in transposes:
# for shape in shapes:
# test_heter(shape, transpose)
# test_heter_vmap(shape, transpose)
# test_heter_grad(shape, transpose)
# test_all()


### PYTEST
class Test_event_csr_matvec_taichi(parameterized.TestCase):
def __init__(self, *args, platform='cpu', **kwargs):
super(Test_event_csr_matvec_taichi, self).__init__(*args, **kwargs)
Expand Down
6 changes: 0 additions & 6 deletions brainpy/_src/math/jitconn/tests/test_event_matvec_taichi.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,12 @@
# -*- coding: utf-8 -*-

import sys

import jax
import jax.numpy as jnp
import pytest
from absl.testing import parameterized

import brainpy.math as bm

is_manual_test = False
if sys.platform.startswith('darwin') and not is_manual_test:
pytest.skip('brainpy.math package may need manual tests.', allow_module_level=True)

shapes = [(100, 200), (10, 1000), (2, 1000), (1000, 10), (1000, 2)]
shapes = [(100, 200), (2, 1000), (1000, 2)]

Expand Down
Loading