Skip to content

Latest commit

 

History

History
61 lines (44 loc) · 1.73 KB

README.md

File metadata and controls

61 lines (44 loc) · 1.73 KB

Requirements

  • V100
  • Docker with functional NVIDIA GPU support

Install

  1. Create a docker container with NVIDIA GPU enabled

    docker run --name mimose -itd --gpus all -v <dataset_path>:/opt/dataset pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel bash
    docker exec -it mimose bash
  2. Install Git using apt

    chmod 777 /tmp # apt update would fail without this
    apt update
    apt install -y git
  3. Setup conda, create a new env and install PyTorch

    # Setup conda
    conda init
    . ~/.bashrc
    
    # Create conda env and install PyTorch
    conda create -n mimose python=3.9
    conda activate mimose
    pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
    
  4. Install mimose-transformers and necessary dependencies

    # Setup mimose-transformers repo and install dependencies
    git clone https://github.com/mimose-project/mimose-transformers && cd mimose-transformers
    pip install -v -e .
    pip install -r examples/pytorch/translation/requirements.txt
    pip install -r examples/pytorch/question-answering/requirements.txt
    pip install -r examples/pytorch/multiple-choice/requirements.txt
    pip install -r examples/pytorch/text-classification/requirements.txt

Getting Started

  1. Run the evaluation scripts for mimose:

    cd mimose-transformers
    # Run the evaluation all-in-one script!
    bash exp.sh
  2. Check logs in examples/pytorch/<task>/train_log directory, where <task> could be one of translation, question-answering, multiple-choice or text-classification.

  3. You can also run seperate evaluation scripts executed in exp.sh manually.