- V100
- Docker with functional NVIDIA GPU support
-
Create a docker container with NVIDIA GPU enabled
docker run --name mimose -itd --gpus all -v <dataset_path>:/opt/dataset pytorch/pytorch:1.11.0-cuda11.3-cudnn8-devel bash docker exec -it mimose bash
-
Install Git using
apt
chmod 777 /tmp # apt update would fail without this apt update apt install -y git
-
Setup conda, create a new env and install PyTorch
# Setup conda conda init . ~/.bashrc # Create conda env and install PyTorch conda create -n mimose python=3.9 conda activate mimose pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
-
Install
mimose-transformers
and necessary dependencies# Setup mimose-transformers repo and install dependencies git clone https://github.com/mimose-project/mimose-transformers && cd mimose-transformers pip install -v -e . pip install -r examples/pytorch/translation/requirements.txt pip install -r examples/pytorch/question-answering/requirements.txt pip install -r examples/pytorch/multiple-choice/requirements.txt pip install -r examples/pytorch/text-classification/requirements.txt
-
Run the evaluation scripts for mimose:
cd mimose-transformers # Run the evaluation all-in-one script! bash exp.sh
-
Check logs in
examples/pytorch/<task>/train_log
directory, where<task>
could be one oftranslation
,question-answering
,multiple-choice
ortext-classification
. -
You can also run seperate evaluation scripts executed in
exp.sh
manually.