Skip to content

camato-es/nlapi-python

Repository files navigation

expert.ai Natural Language APIs for Python

Python client for the expert.ai Natural Language APIs adds Natural Language understanding capabilities to your Python apps. The client can use either the Cloud based Natural Language API or a local instance of Edge NL API.

APIs capabilites

Make reference to the Natural Language API and Edge NL API documentation to know more about the APIs capabilities.

Here is a side-by-side comparison of the two APIs:

Capability Natural Language API Edge NL API
Where does it run? In the Cloud, shared by all users On user's PC
Document analysis: Deep linguistic analysis YES YES
Document analysis: Keyphrase extraction YES YES
Document analysis: Named entities recognition YES YES
Document analysis: Relation extraction YES YES
Document analysis: Sentiment analysis YES YES
Document analysis, full (the sum of all of the above in a single operation) YES YES
Document classification: IPTC Media topics YES NO
Document classification: GeoTax YES NO
Document classification: custom taxonomy NO YES*
Personally Identifiable Information (PII) detection YES NO
Information extraction NO YES*
Document size limit? YES (<= 10KB) NO
Document number limit? NO YES (2500 distinct documents per month, any number and type of analyses per document, when using the free tier)
Characters limit? YES (<= 10 million characters per month when using the free tier) NO

* Available only for custom text intelligence engines created with Studio

Installation

Use pip to install the client library:

pip install expertai-nlapi

Usage

Authorization

Expert.ai Natural Language APIs are free to use, ideally forever, with the limitations specified in the table above.
You need an expert.ai developer account to use the APIs and you can get one for free registering on the expert.ai developer portal.
If you need to exceed the free tier usage limits, subscribe a payment plan from inside the developer portal.

The Python client code expects your developer account credentials to be specified as environment variables:

  • Linux:
export EAI_USERNAME=YOUR_USER
export EAI_PASSWORD=YOUR_PASSWORD
  • Windows:
SET EAI_USERNAME=YOUR_USER
SET EAI_PASSWORD=YOUR_PASSWORD

YOUR_USER is the email address you specified during registration.

You can also define credentials inside your code:

import os
os.environ["EAI_USERNAME"] = 'your@account.email'
os.environ["EAI_PASSWORD"] = 'yourpwd'

Create the client

The next thing to do inside your code is importing the client section of the library and instantiating the client based on the API you want to use.

  • To use the Cloud based Natural Language API:
from expertai.nlapi.cloud.client import ExpertAiClient
client = ExpertAiClient()
  • To use a local instance of Edge NL API:
from expertai.nlapi.edge.client import ExpertAiClient
client = ExpertAiClient()

Access capabilities and self-documentation resources

In the samples directory of the package you can find ready-to-run scripts showing how to access all API capabilities for English texts and API self-documentation resources.
Scripts are listed and described in the tables below.

(Cloud) Natural Language API

Capability Sample script
Document analysis, standard context, full analysis /cloud natural language api/document analysis/full.py
Document analysis, standard context, sub-analysis: Deep linguistic analysis /cloud natural language api/document analysis/deep-linguistic-analysis.py
Document analysis, standard context, sub-analysis: Keyphrase extraction /cloud natural language api/document analysis/keyphrase-extraction.py
Document analysis, standard context, sub-analysis: Named entity recognition /cloud natural language api/document analysis/named-entity-recognition.py
Document analysis, standard context, sub-analysis: Relation extraction /cloud natural language api/document analysis/relation-extraction.py
Document analysis, standard context, sub-analysis: Sentiment analysis /cloud natural language api/document analysis/sentiment-analysis.py
Document analysis, self-documemtation esources: list of the available contexts /cloud natural language api/document analysis/contexts.py
Document classification with iptc taxonomy /cloud natural language api/document classification/iptc.py
Document classification with geotax taxonomy /cloud natural language api/document classification/geotax.py
Document classification, self-documentation resources: list of available taxonomies /cloud natural language api/document classification/taxonomies.py
Document classification, self-documentation resources: category tree of the iptc taxonomy /cloud natural language api/document classification/category-tree-iptc.py
Document classification, self-documentation resources: category tree of the geotax taxonomy /cloud natural language api/document classification/category-tree-geotax.py
Information detection with pii detector /cloud natural language api/information detection/pii.py
Information detection, self-documentation resources: list of available detectors /cloud natural language api/information detection/detectors.py

(Local) Edge NL API for English

Capability Sample script
Document analysis, full analysis /local edge nl api/document analysis/full.py
Document analysis, sub-analysis: Deep linguistic analysis /local edge nl api/document analysis/deep-linguistic-analysis.py
Document analysis, sub-analysis: Keyphrase extraction /local edge nl api/document analysis/keyphrase-extraction.py
Document analysis, sub-analysis: Named entity recognition /local edge nl api/document analysis/named-entity-recognition.py
Document analysis, sub-analysis: Relation extraction /local edge nl api/document analysis/relation-extraction.py
Document analysis, sub-analysis: Sentiment analysis /local edge nl api/document analysis/sentiment-analysis.py

Changing the language

The Natural Language API is capable of processing texts of various languages. You can use self-documentations resources like contexts and taxonomies—look for the corresponding ready-to-run scripts in the first of the two tables above—to determine if a functionality is available for a given language.
If it's available, specify the language parameter in your code, for example:

text = "Michael Jordan è stato uno dei migliori giocatori di pallacanestro di tutti i tempi. Fare canestro è stata la capacità in cui Jordan spiccava, ma ancora detiene un record NBA di gioco difensivo, con otto palle rubate in metà partita."
language= 'it'

output = client.specific_resource_analysis(
    body={"document": {"text": text}}, 
    params={'language': language, 'resource': 'disambiguation'
})

See also the documentation pages about contexts and taxonomies.

Edge NL API can also process texts of different languages, but in this case you have to download from the developer portal and launch on your PC the package corresponding to the language you are interested in.

Change Edge NL API host and port

If you need to run your client application on a computer and the Edge NL API on another or if you need Edge NL API to listen on a TCP port other than the default (which is 6699), you can use the set_host method of the Edge NL API client to specify the host and the port, for example:

from expertai.nlapi.edge.client import ExpertAiClient
client = ExpertAiClient()
client.set_host('my_edge_server', 6699)

Or, if you continue to use the API on the local computer, but you changed the port in the Edge NL API startup batch file:

from expertai.nlapi.edge.client import ExpertAiClient
client = ExpertAiClient()
client.set_host('localhost', 6700)

More examples of document analysis

Start with deep linguistic analysis

To perform the deep linguistic analysis of a text:

  • Natural Language API:
output = client.specific_resource_analysis(
    body={"document": {"text": text}}, 
    params={'language': language, 'resource': 'disambiguation'
})
  • Edge NL API:
output = client.deep_linguistic_analysis(text)

...then examine tokenization and lemmatization...

Lemmatization looks beyond word reduction, using a language's full vocabulary to apply a morphological analysis to words. The lemma of 'was' is 'be' and the lemma of 'mice' is 'mouse'. Further, the lemma of 'meeting' might be 'meet' or 'meeting' depending on its use in a sentence.

print (f'{"TOKEN":{20}} {"LEMMA":{8}}')

for token in output.tokens:
    print (f'{text[token.start:token.end]:{20}} {token.lemma:{8}}')
TOKEN                LEMMA   
Facebook             Facebook Inc.
is                   is      
looking at           look at 
buying               buy     
an                   an      
American             American
startup              startup 
for                  for     
$6 million           6,000,000 dollar
based                base    
in                   in      
Springfield, IL      Springfield
.                    .       

...Part of Speech (PoS) tagging...

Analysis determines the part-of-speech of tokens. PoS labels are from the Universal Dependencies framework.

print (f'{"TOKEN":{18}} {"PoS":{4}}')

for token in output.tokens:
    print (f'{text[token.start:token.end]:{18}} {token.pos:{4}}  ' )
TOKEN              PoS   
Facebook           PROPN  
is                 AUX    
looking at         VERB   
buying             VERB   
an                 DET    
American           ADJ    
startup            NOUN   
for                ADP    
$6 million         NOUN   
based              VERB   
in                 ADP    
Springfield, IL    PROPN  
.                  PUNCT   

...and dependency parsing information

The analysis returns the dependency parsing information assigned to each token, using the Universal Dependencies framework as well.

print (f'{"TOKEN":{18}} {"Dependency label":{8}}')

for token in output.tokens:
    print (f'{text[token.start:token.end]:{18}} {token.dependency.label:{4}} ' )
TOKEN              Dependency label
Facebook           nsubj 
is                 aux  
looking at         root 
buying             advcl 
an                 det  
American           amod 
startup            obj  
for                case 
$6 million         obl  
based              acl  
in                 case 
Springfield, IL    obl  
.                  punct 

Named entity recognition

Going a step beyond linguistic analysis, named entities add another layer of context. Named entities are recognized by the entities sub-analysis.

  • Natural Language API:
output = client.specific_resource_analysis(
    body={"document": {"text": text}}, 
    params={'language': language, 'resource': 'entities'})
  • Edge NL API:
output = client.named_entity_recognition(text)

Printing results:

print (f'{"ENTITY":{40}} {"TYPE":{10}}')
       
for entity in output.entities:
    print (f'{entity.lemma:{40}} {entity.type_:{10}}')
ENTITY               TYPE
6,000,000 dollar     MON        
Springfield          GEO        
Facebook Inc.        COM

In addition to the entity type, the API provides some metadata from Linked Open Data sources such as WikiData and GeoNames. For example, you can get the open data connected with the entity Springfield, IL

print(output.entities[1].lemma)
Springfield
for entry in output.knowledge:
    if (entry.syncon == document.entities[1].syncon):
            for prop in entry.properties:
                print (f'{prop.type_:{12}} {prop.value:{30}}')
    
Coordinate   Lat:39.47.58N/39.799446;Long:89.39.18W/-89.654999
DBpediaId    dbpedia.org/page/Springfield  
GeoNamesId   4250542                       
WikiDataId   Q28515                        

Springfield has been recognized as Q28515 on Wikidata, that is the Q-id for Springfield, IL (i.e.not for Springfield in Vermont o in California)

Key elements

Key elements, the result of keyphrase extraction, are obtained with the relevants sub-analysis and identified from the document as main sentences, main concepts (called "syncons"), main lemmas and relevant Knowledge Graph topics.

Let's focus on the main lemmas of the document; each lemma is provided with a relevance score.

  • Natural Language API:
document = client.specific_resource_analysis(
    body={"document": {"text": text}}, 
    params={'language': language, 'resource': 'relevants'})
  • Edge NL API:
document = client.keyphrase_extraction(text)
print (f'{"LEMMA":{20}} {"SCORE":{5}} ')
       
for mainlemma in document.main_lemmas:
    print (f'{mainlemma.value:{20}} {mainlemma.score:{5}}')
LEMMA                SCORE 
Facebook Inc.         43.5
startup               40.4
Springfield             15

Sentiment analysis

Sentiment is obtained with the sentiment sub-analysis and expresses the polarity—positive or negative—and the intensity of the tone of the text is.

text='Today is a good day. I love to go to mountain.'
  • Natural Language API:
document = client.specific_resource_analysis(
    body={"document": {"text": text}}, 
    params={'language': language, 'resource': 'sentiment'})
  • Edge NL API:
document = client.sentiment(text)

Printing results:

print("sentiment:", document.sentiment.overall)

Relations

Relations are obtained with the relations sub-analysis that labels concepts expressed in the text with their semantic role with respect to the verb they are connected to.

text='John sent a letter to Mary.'
  • Natural Language API:
# cloud API
document = client.specific_resource_analysis(
    body={"document": {"text": text}}, 
    params={'language': language, 'resource': 'relations'})
  • Edge NL API:
# Edge API
document = client.relations(text)

Printing results:

for rel in document.relations:
   print("Verb:", rel.verb.lemma)
   for r in rel.related:
      print("Relation:", r.relation, "Lemma:", r.lemma )

More examples of document classification

Let's see how to classify documents according to the IPTC Media Topics Taxonomy provided by the Natural Language API; then we'll use the matplot lib to display categorization results as a bar chart.

text = """Strategic acquisitions have been important to the growth of Facebook (FB). 
Mark Zuckerberg founded the company in 2004, and since then it has acquired scores of companies, 
ranging from tiny two-person start-ups to well-established businesses such as WhatsApp. For 2019, 
Facebook reported 2.5 billion monthly active users (MAU) and $70.69 billion in revenue."""
import matplotlib.pyplot as plt
%matplotlib inline
plt.style.use('ggplot')

taxonomy='iptc'

document = client.classification(body={"document": {"text": text}}, params={'taxonomy': taxonomy,'language': language})

categories = []
scores = []

print (f'{"CATEGORY":{27}} {"IPTC ID":{10}} {"FREQUENCY":{8}}')
for category in document.categories:
    categories.append(category.label)
    scores.append(category.frequency)
    print (f'{category.label:{27}} {category.id_:{10}}{category.frequency:{8}}')
CATEGORY                    ID           FREQUENCY
Earnings                    20000178     29.63
Social networking           20000769     21.95
plt.bar(categories, scores, color='#17a2b8')
plt.xlabel("Categories")
plt.ylabel("Frequency")
plt.title("Media Topics Classification")

plt.show()

png

Basic Edge NL API packages don't provide document classification, but you can create your own text intelligence engine performing document classification by using expert.ai Studio.

To request classification to a custom instance of the Edge NL API simply use:

document = client.classification(text)

Results structure is the same as for the Natural Language API.

Information detection

Information detection leverages deep linguistic analysis to extract particular types of information from the text.

For example, the Personal Identifiable Information (PII) detector of the Natural Language API extract personal information such as people names, bith dates, postal addresses, telephone numbers, financial products, etc. that could be considered "sensitive".

text='Longtime TFS News reporter Marcus Smith died unexpectedly Monday at the age of 60'
  • Natural Language API:
document = client.detect(
		body={"document": {"text": text}}, 
		params={'language': language,'detector':'pii'})

for extraction in document.extractions:
  print("Template:", extraction.template)
  for field in extraction.fields:
    print("field: ", field.name," value: " , field.value)
    for position in field.positions :
        print("start: ", position.start, "end: " , position.end)

Basic Edge NL API packages don't provide information detection, but you can create your own text intelligence engine performing document classification by using expert.ai Studio.

...and if you made it this far...

Good job! You're an expert in the expert.ai community! 👏 🎉

Check out other language SDKs available on our Github page.

Contribute to this project

Clone this repository and run the following script:

$ cd nlapi-python
$ pip install -r requirements-dev.txt

As good practice it's recommended to work in an isolated Python environment, creating a virtual environment with virtualenv package before building the package. You can create your environment with the command:

$ virtualenv expertai
$ source expertai/bin/activate

About

Python Client for the expert.ai Natural Language API

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages