Package that integrates NumPy Arrays into Pydantic!
pydantic_numpy.typing
provides many typings such asNpNDArrayFp64
,Np3DArrayFp64
(float64 that must be 3D)! Works with bothpydantic.BaseModel
andpydantic.dataclass
NumpyModel
(derived frompydantic.BaseModel
) make it possible to dump and loadnp.ndarray
within model fields alongside other fields that are not instances ofnp.ndarray
!
See the test.helper.testing_groups
to see types that are defined explicitly.
For more examples see test_ndarray.py
import numpy as np
from pydantic import BaseModel
import pydantic_numpy.typing as pnd
from pydantic_numpy import np_array_pydantic_annotated_typing
from pydantic_numpy.model import NumpyModel, MultiArrayNumpyFile
class MyBaseModelDerivedModel(BaseModel):
any_array_dtype_and_dimension: pnd.NpNDArray
# Must be numpy float32 as dtype
k: np_array_pydantic_annotated_typing(data_type=np.float32)
shorthand_for_k: pnd.NpNDArrayFp32
must_be_1d_np_array: np_array_pydantic_annotated_typing(dimensions=1)
class MyDemoNumpyModel(NumpyModel):
k: np_array_pydantic_annotated_typing(data_type=np.float32)
# Instantiate from array
cfg = MyDemoModel(k=[1, 2])
# Instantiate from numpy file
cfg = MyDemoModel(k="path_to/array.npy")
# Instantiate from npz file with key
cfg = MyDemoModel(k=MultiArrayNumpyFile(path="path_to/array.npz", key="k"))
cfg.k # np.ndarray[np.float32]
cfg.dump("path_to_dump_dir", "object_id")
cfg.load("path_to_dump_dir", "object_id")
NumpyModel.load
requires the original model:
MyNumpyModel.load(<path>)
Use model_agnostic_load
when you have several models that may be the correct model:
from pydantic_numpy.model import model_agnostic_load
cfg.dump("path_to_dump_dir", "object_id")
equals_cfg = model_agnostic_load("path_to_dump_dir", "object_id", models=[MyNumpyModel, MyDemoModel])
There are two ways to define. Function derived types with pydantic_numpy.helper.annotation.np_array_pydantic_annotated_typing
.
Function derived types don't work with static type checkers like Pyright and MyPy. In case you need the support, just create the types yourself:
NpStrict1DArrayInt64 = Annotated[
np.ndarray[tuple[int], np.dtype[np.int64]],
NpArrayPydanticAnnotation.factory(data_type=np.int64, dimensions=1, strict_data_typing=True),
]
If the default serialization of NumpyDataDict, as outlined in typing.py, doesn't meet your requirements, you have the option to define a custom type with its own serializer. This can be achieved using the NpArrayPydanticAnnotation.factory method, which accepts a custom serialization function through its serialize_numpy_array_to_json parameter. This parameter expects a function of the form Callable[[npt.ArrayLike], Iterable]
, allowing you to tailor the serialization process to your specific needs.
Example below illustrates definition of 1d-array of float32
type that serializes to flat Python list (without nested dict as in default NumpyDataDict
case):
def _serialize_numpy_array_to_float_list(array_like: npt.ArrayLike) -> Iterable:
return np.array(array_like).astype(float).tolist()
Np1DArrayFp32 = Annotated[
np.ndarray[tuple[int], np.dtype[np.float32]],
NpArrayPydanticAnnotation.factory(
data_type=np.float32,
dimensions=1,
strict_data_typing=False,
serialize_numpy_array_to_json=_serialize_numpy_array_to_float_list,
),
]
pip install pydantic-numpy
The original idea originates from this discussion, and forked from cheind's repository.