Skip to content

Commit

Permalink
Add wiki-all-6-3 BM25 regressions (#2067)
Browse files Browse the repository at this point in the history
Add wiki-all-6-3 BM25 QA regressions
  • Loading branch information
manveertamber authored Mar 4, 2023
1 parent 1609686 commit 4b7662c
Show file tree
Hide file tree
Showing 3 changed files with 301 additions and 0 deletions.
159 changes: 159 additions & 0 deletions docs/regressions-wiki-all-6-3-tamber-bm25.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
# Anserini Regressions: QA with wiki-all-6-3-tamber Corpus

**Models**: BM25

This page documents QA regression experiments on the wiki-all-6-3-tamber corpus, which is integrated into Anserini's regression testing framework.

The exact configurations for these regressions are stored in [this YAML file](../src/main/resources/regression/wiki-all-6-3-tamber-bm25.yaml).
Note that this page is automatically generated from [this template](../src/main/resources/docgen/templates/wiki-all-6-3-tamber-bm25.template) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:

```bash
python src/main/python/run_regression.py --index --verify --search --regression wiki-all-6-3-tamber-bm25
```

## Indexing

Typical indexing command:

```bash
target/appassembler/bin/IndexCollection \
-collection MrTyDiCollection \
-input /path/to/wiki-all-6-3-tamber \
-index indexes/lucene-index.wiki-all-6-3-tamber/ \
-generator DefaultLuceneDocumentGenerator \
-threads 20 -storeRaw \
>& logs/log.wiki-all-6-3-tamber &
```

The directory `/path/to/wiki-all-6-3-tamber/`should be a directory containing the wiki-all-6-3-tamber passages collection retrieved from [here](https://huggingface.co/datasets/castorini/odqa-wiki-corpora).

For additional details, see explanation of [common indexing options](common-indexing-options.md).

## Retrieval

Topics are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the test set of multiple QA datasets, namely Natural Questions, TriviaQA, SQuAD, and WebQuestions.

After indexing has completed, you should be able to perform retrieval as follows:

```bash
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.wiki-all-6-3-tamber/ \
-topics src/main/resources/topics-and-qrels/topics.dpr.nq.test.txt \
-topicreader DprNq \
-output runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.nq.test.txt \
-bm25 &
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.wiki-all-6-3-tamber/ \
-topics src/main/resources/topics-and-qrels/topics.dpr.trivia.test.txt \
-topicreader DprNq \
-output runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.trivia.test.txt \
-bm25 &
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.wiki-all-6-3-tamber/ \
-topics src/main/resources/topics-and-qrels/topics.dpr.squad.test.txt \
-topicreader DprJsonl \
-output runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.squad.test.txt \
-bm25 &
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.wiki-all-6-3-tamber/ \
-topics src/main/resources/topics-and-qrels/topics.dpr.wq.test.txt \
-topicreader DprJsonl \
-output runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.wq.test.txt \
-bm25 &
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.wiki-all-6-3-tamber/ \
-topics src/main/resources/topics-and-qrels/topics.dpr.curated.test.txt \
-topicreader DprJsonl \
-output runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.curated.test.txt \
-bm25 &
target/appassembler/bin/SearchCollection \
-index indexes/lucene-index.wiki-all-6-3-tamber/ \
-topics src/main/resources/topics-and-qrels/topics.nq.test.txt \
-topicreader DprNq \
-output runs/run.wiki-all-6-3-tamber.bm25.topics.nq.test.txt \
-bm25 &
```

The trec format will need to be converted to DPR's JSON format for evaluation:
```bash
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--index indexes/lucene-index.wiki-all-6-3-tamber/ \
--topics dpr-nq-test \
--input runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.nq.test.txt \
--output runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.nq.test.txt.json \
--combine-title-text &
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--index indexes/lucene-index.wiki-all-6-3-tamber/ \
--topics dpr-trivia-test \
--input runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.trivia.test.txt \
--output runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.trivia.test.txt.json \
--combine-title-text &
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--index indexes/lucene-index.wiki-all-6-3-tamber/ \
--topics dpr-squad-test \
--input runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.squad.test.txt \
--output runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.squad.test.txt.json \
--combine-title-text &
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--index indexes/lucene-index.wiki-all-6-3-tamber/ \
--topics dpr-wq-test \
--input runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.wq.test.txt \
--output runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.wq.test.txt.json \
--combine-title-text &
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--index indexes/lucene-index.wiki-all-6-3-tamber/ \
--topics dpr-curated-test \
--input runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.curated.test.txt \
--output runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.curated.test.txt.json \
--combine-title-text --regex &
python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run \
--index indexes/lucene-index.wiki-all-6-3-tamber/ \
--topics nq-test \
--input runs/run.wiki-all-6-3-tamber.bm25.topics.nq.test.txt \
--output runs/run.wiki-all-6-3-tamber.bm25.topics.nq.test.txt.json \
--combine-title-text &
```

Evaluation can be performed using scripts from pyserini:

```bash
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.nq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.nq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.trivia.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.trivia.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.squad.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.squad.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.wq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.wq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.curated.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wiki-all-6-3-tamber.bm25.topics.dpr.curated.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 20 --retrieval runs/run.wiki-all-6-3-tamber.bm25.topics.nq.test.txt.json
python -m pyserini.eval.evaluate_dpr_retrieval --topk 100 --retrieval runs/run.wiki-all-6-3-tamber.bm25.topics.nq.test.txt.json
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

| **top_20_accuracy** | **BM25 (default parameters)**|
|:-------------------------------------------------------------------------------------------------------------|-----------|
| [DPR: Natural Questions Test](https://github.com/facebookresearch/DPR) | 0.6604 |
| [DPR: TriviaQA Test](https://github.com/facebookresearch/DPR) | 0.7832 |
| [DPR: SQuAD Test](https://github.com/facebookresearch/DPR) | 0.7265 |
| [DPR: WebQuestions Test](https://github.com/facebookresearch/DPR) | 0.6403 |
| [DPR: CuratedTREC Test](https://github.com/facebookresearch/DPR) | 0.8055 |
| [EfficientQA: Natural Questions Test](https://efficientqa.github.io/) | 0.6665 |
| **top_100_accuracy** | **BM25 (default parameters)**|
| [DPR: Natural Questions Test](https://github.com/facebookresearch/DPR) | 0.8083 |
| [DPR: TriviaQA Test](https://github.com/facebookresearch/DPR) | 0.8482 |
| [DPR: SQuAD Test](https://github.com/facebookresearch/DPR) | 0.8325 |
| [DPR: WebQuestions Test](https://github.com/facebookresearch/DPR) | 0.7874 |
| [DPR: CuratedTREC Test](https://github.com/facebookresearch/DPR) | 0.9135 |
| [EfficientQA: Natural Questions Test](https://efficientqa.github.io/) | 0.8166 |

## Reproduction Log[*](reproducibility.md)

To add to this reproduction log, modify [this template](../src/main/resources/docgen/templates/wiki-all-6-3-tamber-bm25.template) and run `bin/build.sh` to rebuild the documentation.
Original file line number Diff line number Diff line change
@@ -0,0 +1,58 @@
# Anserini Regressions: QA with wiki-all-6-3-tamber Corpus

**Models**: BM25

This page documents QA regression experiments on the wiki-all-6-3-tamber corpus, which is integrated into Anserini's regression testing framework.

The exact configurations for these regressions are stored in [this YAML file](${yaml}).
Note that this page is automatically generated from [this template](${template}) as part of Anserini's regression pipeline, so do not modify this page directly; modify the template instead.

From one of our Waterloo servers (e.g., `orca`), the following command will perform the complete regression, end to end:

```bash
python src/main/python/run_regression.py --index --verify --search --regression ${test_name}
```

## Indexing

Typical indexing command:

```bash
${index_cmds}
```

The directory `/path/to/${corpus}/`should be a directory containing the wiki-all-6-3-tamber passages collection retrieved from [here](https://huggingface.co/datasets/castorini/odqa-wiki-corpora).

For additional details, see explanation of [common indexing options](common-indexing-options.md).

## Retrieval

Topics are stored in [`src/main/resources/topics-and-qrels/`](../src/main/resources/topics-and-qrels/).
The regression experiments here evaluate on the test set of multiple QA datasets, namely Natural Questions, TriviaQA, SQuAD, and WebQuestions.

After indexing has completed, you should be able to perform retrieval as follows:

```bash
${ranking_cmds}
```

The trec format will need to be converted to DPR's JSON format for evaluation:
```bash
${converting_cmds}
```

Evaluation can be performed using scripts from pyserini:

```bash
${eval_cmds}
```

## Effectiveness

With the above commands, you should be able to reproduce the following results:

${effectiveness}

## Reproduction Log[*](reproducibility.md)

To add to this reproduction log, modify [this template](${template}) and run `bin/build.sh` to rebuild the documentation.
84 changes: 84 additions & 0 deletions src/main/resources/regression/wiki-all-6-3-tamber-bm25.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
---
corpus: wiki-all-6-3-tamber
corpus_path: collections/wikipedia/wiki-all-6-3-tamber

index_path: indexes/lucene-index.wiki-all-6-3-tamber/
collection_class: MrTyDiCollection
generator_class: DefaultLuceneDocumentGenerator
index_threads: 20
index_options: -storeRaw
index_stats:
documents: 76680040
documents (non-empty): 76680037
total terms: 5064706668

conversions:
- command: python -m pyserini.eval.convert_trec_run_to_dpr_retrieval_run
params: --combine-title-text
in_file_ext: ""
out_file_ext: .json

metrics:
- metric: top_20_accuracy
command: python -m pyserini.eval.evaluate_dpr_retrieval
params: --topk 20 --retrieval
separator: " "
parse_index: 1
metric_precision: 4
can_combine: false
- metric: top_100_accuracy
command: python -m pyserini.eval.evaluate_dpr_retrieval
params: --topk 100 --retrieval
separator: " "
parse_index: 1
metric_precision: 4
can_combine: false

topic_root: src/main/resources/topics-and-qrels/
qrels_root:
topics:
- name: "[DPR: Natural Questions Test](https://github.com/facebookresearch/DPR)"
id: dpr-nq-test
path: topics.dpr.nq.test.txt
topic_reader: DprNq
- name: "[DPR: TriviaQA Test](https://github.com/facebookresearch/DPR)"
id: dpr-trivia-test
path: topics.dpr.trivia.test.txt
topic_reader: DprNq
- name: "[DPR: SQuAD Test](https://github.com/facebookresearch/DPR)"
id: dpr-squad-test
path: topics.dpr.squad.test.txt
topic_reader: DprJsonl
- name: "[DPR: WebQuestions Test](https://github.com/facebookresearch/DPR)"
id: dpr-wq-test
path: topics.dpr.wq.test.txt
topic_reader: DprJsonl
- name: "[DPR: CuratedTREC Test](https://github.com/facebookresearch/DPR)"
id: dpr-curated-test
path: topics.dpr.curated.test.txt
topic_reader: DprJsonl
convert_params: --regex
- name: "[EfficientQA: Natural Questions Test](https://efficientqa.github.io/)"
id: nq-test
path: topics.nq.test.txt
topic_reader: DprNq

models:
- name: bm25
display: BM25 (default parameters)
params: -bm25
results:
top_20_accuracy:
- 0.6604
- 0.7832
- 0.7265
- 0.6403
- 0.8055
- 0.6665
top_100_accuracy:
- 0.8083
- 0.8482
- 0.8325
- 0.7874
- 0.9135
- 0.8166

0 comments on commit 4b7662c

Please sign in to comment.