Skip to content

Using WebSocket to build an interactive web application :: Learn how to the send and receive messages between a browser and the server over a WebSocket

Notifications You must be signed in to change notification settings

catalyst0/gs-messaging-stomp-websocket

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This guide walks you through the process of creating a “Hello, world” application that sends messages back and forth between a browser and a server. WebSocket is a thin, lightweight layer above TCP. This makes it suitable for using “subprotocols” to embed messages. In this guide, we use STOMP messaging with Spring to create an interactive web application.

What You Will build

You will build a server that accepts a message that carries a user’s name. In response, the server will push a greeting into a queue to which the client is subscribed.

Starting with Spring Initializr

For all Spring applications, you should start with the Spring Initializr. The Initializr offers a fast way to pull in all the dependencies you need for an application and does a lot of the set up for you. This example needs only the Websocket dependency. The following image shows the Initializr set up for this sample project:

initializr
Note
The preceding image shows the Initializr with Maven chosen as the build tool. You can also use Gradle. It also shows values of com.example and messaging-stomp-websocket as the Group and Artifact, respectively. You will use those values throughout the rest of this sample.

The following listing shows the pom.xml file that is created when you choose Maven:

link:initial/pom.xml[role=include]

The following listing shows the build.gradle file that is created when you choose Gradle:

link:initial/build.gradle[role=include]

Adding Dependencies

The Spring Initializr does not provide everything you need in this case. For Maven, you need to add the following dependencies:

<dependency>
  <groupId>org.webjars</groupId>
  <artifactId>webjars-locator-core</artifactId>
</dependency>
<dependency>
  <groupId>org.webjars</groupId>
  <artifactId>sockjs-client</artifactId>
  <version>1.0.2</version>
</dependency>
<dependency>
  <groupId>org.webjars</groupId>
  <artifactId>stomp-websocket</artifactId>
  <version>2.3.3</version>
</dependency>
<dependency>
  <groupId>org.webjars</groupId>
  <artifactId>bootstrap</artifactId>
  <version>3.3.7</version>
</dependency>
<dependency>
  <groupId>org.webjars</groupId>
  <artifactId>jquery</artifactId>
  <version>3.1.1-1</version>
</dependency>

The following listing shows the finished pom.xml file:

link:initial/pom.xml[role=include]

If you use Gradle, you need to add the following dependencies:

implementation 'org.webjars:webjars-locator-core'
implementation 'org.webjars:sockjs-client:1.0.2'
implementation 'org.webjars:stomp-websocket:2.3.3'
implementation 'org.webjars:bootstrap:3.3.7'
implementation 'org.webjars:jquery:3.1.1-1'

The following listing shows the finished build.gradle file:

link:initial/build.gradle[role=include]

Create a Resource Representation Class

Now that you have set up the project and build system, you can create your STOMP message service.

Begin the process by thinking about service interactions.

The service will accept messages that contain a name in a STOMP message whose body is a JSON object. If the name is Fred, the message might resemble the following:

{
    "name": "Fred"
}

To model the message that carries the name, you can create a plain old Java object with a name property and a corresponding getName() method, as the following listing (from src/main/java/com/example/messagingstompwebsocket/HelloMessage.java) shows:

link:complete/src/main/java/com/example/messagingstompwebsocket/HelloMessage.java[role=include]

Upon receiving the message and extracting the name, the service will process it by creating a greeting and publishing that greeting on a separate queue to which the client is subscribed. The greeting will also be a JSON object, which as the following listing shows:

{
    "content": "Hello, Fred!"
}

To model the greeting representation, add another plain old Java object with a content property and a corresponding getContent() method, as the following listing (from src/main/java/com/example/messagingstompwebsocket/Greeting.java) shows:

link:complete/src/main/java/com/example/messagingstompwebsocket/Greeting.java[role=include]

Spring will use the Jackson JSON library to automatically marshal instances of type Greeting into JSON.

Next, you will create a controller to receive the hello message and send a greeting message.

Create a Message-handling Controller

In Spring’s approach to working with STOMP messaging, STOMP messages can be routed to @Controller classes. For example, the GreetingController (from src/main/java/com/example/messagingstompwebsocket/GreetingController.java) is mapped to handle messages to the /hello destination, as the following listing shows:

link:complete/src/main/java/com/example/messagingstompwebsocket/GreetingController.java[role=include]

This controller is concise and simple, but plenty is going on. We break it down step by step.

The @MessageMapping annotation ensures that, if a message is sent to the /hello destination, the greeting() method is called.

The payload of the message is bound to a HelloMessage object, which is passed into greeting().

Internally, the implementation of the method simulates a processing delay by causing the thread to sleep for one second. This is to demonstrate that, after the client sends a message, the server can take as long as it needs to asynchronously process the message. The client can continue with whatever work it needs to do without waiting for the response.

After the one-second delay, the greeting() method creates a Greeting object and returns it. The return value is broadcast to all subscribers of /topic/greetings, as specified in the @SendTo annotation. Note that the name from the input message is sanitized, since, in this case, it will be echoed back and re-rendered in the browser DOM on the client side.

Configure Spring for STOMP messaging

Now that the essential components of the service are created, you can configure Spring to enable WebSocket and STOMP messaging.

Create a Java class named WebSocketConfig that resembles the following listing (from src/main/java/com/example/messagingstompwebsocket/WebSocketConfig.java):

link:complete/src/main/java/com/example/messagingstompwebsocket/WebSocketConfig.java[role=include]

WebSocketConfig is annotated with @Configuration to indicate that it is a Spring configuration class. It is also annotated with @EnableWebSocketMessageBroker. As its name suggests, @EnableWebSocketMessageBroker enables WebSocket message handling, backed by a message broker.

The configureMessageBroker() method implements the default method in WebSocketMessageBrokerConfigurer to configure the message broker. It starts by calling enableSimpleBroker() to enable a simple memory-based message broker to carry the greeting messages back to the client on destinations prefixed with /topic. It also designates the /app prefix for messages that are bound for methods annotated with @MessageMapping. This prefix will be used to define all the message mappings. For example, /app/hello is the endpoint that the GreetingController.greeting() method is mapped to handle.

The registerStompEndpoints() method registers the /gs-guide-websocket endpoint, enabling SockJS fallback options so that alternate transports can be used if WebSocket is not available. The SockJS client will attempt to connect to /gs-guide-websocket and use the best available transport (websocket, xhr-streaming, xhr-polling, and so on).

Create a Browser Client

With the server-side pieces in place, you can turn your attention to the JavaScript client that will send messages to and receive messages from the server side.

Create an index.html file similar to the following listing (from src/main/resources/static/index.html):

link:complete/src/main/resources/static/index.html[role=include]

This HTML file imports the SockJS and STOMP javascript libraries that will be used to communicate with our server through STOMP over websocket. We also import app.js, which contains the logic of our client application. The following listing (from src/main/resources/static/app.js) shows that file:

link:complete/src/main/resources/static/app.js[role=include]

The main pieces of this JavaScript file to understand are the connect() and sendName() functions.

The connect() function uses SockJS and stomp.js to open a connection to /gs-guide-websocket, which is where our SockJS server waits for connections. Upon a successful connection, the client subscribes to the /topic/greetings destination, where the server will publish greeting messages. When a greeting is received on that destination, it will append a paragraph element to the DOM to display the greeting message.

The sendName() function retrieves the name entered by the user and uses the STOMP client to send it to the /app/hello destination (where GreetingController.greeting() will receive it).

Make the Application Executable

Spring Boot creates an application class for you. In this case, it needs no further modification. You can use it to run this application. The following listing (from src/main/java/com/example/messagingstompwebsocket/MessagingStompWebsocketApplication.java) shows the application class:

link:complete/src/main/java/com/example/messagingstompwebsocket/MessagingStompWebsocketApplication.java[role=include]

Logging output is displayed. The service should be up and running within a few seconds.

Test the service

Now that the service is running, point your browser at http://localhost:8080 and click the Connect button.

Upon opening a connection, you are asked for your name. Enter your name and click Send. Your name is sent to the server as a JSON message over STOMP. After a one-second simulated delay, the server sends a message back with a “Hello” greeting that is displayed on the page. At this point, you can send another name or you can click the Disconnect button to close the connection.

Summary

Congratulations! You have just developed a STOMP-based messaging service with Spring.

About

Using WebSocket to build an interactive web application :: Learn how to the send and receive messages between a browser and the server over a WebSocket

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Java 61.5%
  • HTML 18.1%
  • JavaScript 12.1%
  • CSS 4.9%
  • Shell 3.4%