-
Notifications
You must be signed in to change notification settings - Fork 12
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Joey Ballentine <34788790+joeyballentine@users.noreply.github.com>
- Loading branch information
1 parent
6f17937
commit 6893851
Showing
10 changed files
with
431 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,46 @@ | ||
from __future__ import annotations | ||
|
||
from ...__helpers.model_descriptor import ( | ||
ImageModelDescriptor, | ||
StateDict, | ||
) | ||
from ..__arch_helpers.state import get_seq_len | ||
from .arch.NAFNet_arch import NAFNet | ||
|
||
|
||
def load(state_dict: StateDict) -> ImageModelDescriptor[NAFNet]: | ||
# default values | ||
img_channel: int = 3 | ||
width: int = 16 | ||
middle_blk_num: int = 1 | ||
enc_blk_nums: list[int] = [] | ||
dec_blk_nums: list[int] = [] | ||
|
||
img_channel = state_dict["intro.weight"].shape[1] | ||
width = state_dict["intro.weight"].shape[0] | ||
middle_blk_num = get_seq_len(state_dict, "middle_blks") | ||
for i in range(get_seq_len(state_dict, "encoders")): | ||
enc_blk_nums.append(get_seq_len(state_dict, f"encoders.{i}")) | ||
for i in range(get_seq_len(state_dict, "decoders")): | ||
dec_blk_nums.append(get_seq_len(state_dict, f"decoders.{i}")) | ||
|
||
model = NAFNet( | ||
img_channel=img_channel, | ||
width=width, | ||
middle_blk_num=middle_blk_num, | ||
enc_blk_nums=enc_blk_nums, | ||
dec_blk_nums=dec_blk_nums, | ||
) | ||
|
||
return ImageModelDescriptor( | ||
model, | ||
state_dict, | ||
architecture="NAFNet", | ||
purpose="Restoration", | ||
tags=[f"{width}w"], | ||
supports_half=False, # TODO: Test this | ||
supports_bfloat16=True, | ||
scale=1, | ||
input_channels=img_channel, | ||
output_channels=img_channel, | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,21 @@ | ||
MIT License | ||
|
||
Copyright (c) 2022 megvii-model | ||
|
||
Permission is hereby granted, free of charge, to any person obtaining a copy | ||
of this software and associated documentation files (the "Software"), to deal | ||
in the Software without restriction, including without limitation the rights | ||
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell | ||
copies of the Software, and to permit persons to whom the Software is | ||
furnished to do so, subject to the following conditions: | ||
|
||
The above copyright notice and this permission notice shall be included in all | ||
copies or substantial portions of the Software. | ||
|
||
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR | ||
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, | ||
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE | ||
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER | ||
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, | ||
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE | ||
SOFTWARE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,223 @@ | ||
# ------------------------------------------------------------------------ | ||
# Copyright (c) 2022 megvii-model. All Rights Reserved. | ||
# ------------------------------------------------------------------------ | ||
|
||
""" | ||
Simple Baselines for Image Restoration | ||
@article{chen2022simple, | ||
title={Simple Baselines for Image Restoration}, | ||
author={Chen, Liangyu and Chu, Xiaojie and Zhang, Xiangyu and Sun, Jian}, | ||
journal={arXiv preprint arXiv:2204.04676}, | ||
year={2022} | ||
} | ||
""" | ||
from __future__ import annotations | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
from .arch_util import LayerNorm2d | ||
|
||
|
||
class SimpleGate(nn.Module): | ||
def forward(self, x): | ||
x1, x2 = x.chunk(2, dim=1) | ||
return x1 * x2 | ||
|
||
|
||
class NAFBlock(nn.Module): | ||
def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.0): | ||
super().__init__() | ||
dw_channel = c * DW_Expand | ||
self.conv1 = nn.Conv2d( | ||
in_channels=c, | ||
out_channels=dw_channel, | ||
kernel_size=1, | ||
padding=0, | ||
stride=1, | ||
groups=1, | ||
bias=True, | ||
) | ||
self.conv2 = nn.Conv2d( | ||
in_channels=dw_channel, | ||
out_channels=dw_channel, | ||
kernel_size=3, | ||
padding=1, | ||
stride=1, | ||
groups=dw_channel, | ||
bias=True, | ||
) | ||
self.conv3 = nn.Conv2d( | ||
in_channels=dw_channel // 2, | ||
out_channels=c, | ||
kernel_size=1, | ||
padding=0, | ||
stride=1, | ||
groups=1, | ||
bias=True, | ||
) | ||
|
||
# Simplified Channel Attention | ||
self.sca = nn.Sequential( | ||
nn.AdaptiveAvgPool2d(1), | ||
nn.Conv2d( | ||
in_channels=dw_channel // 2, | ||
out_channels=dw_channel // 2, | ||
kernel_size=1, | ||
padding=0, | ||
stride=1, | ||
groups=1, | ||
bias=True, | ||
), | ||
) | ||
|
||
# SimpleGate | ||
self.sg = SimpleGate() | ||
|
||
ffn_channel = FFN_Expand * c | ||
self.conv4 = nn.Conv2d( | ||
in_channels=c, | ||
out_channels=ffn_channel, | ||
kernel_size=1, | ||
padding=0, | ||
stride=1, | ||
groups=1, | ||
bias=True, | ||
) | ||
self.conv5 = nn.Conv2d( | ||
in_channels=ffn_channel // 2, | ||
out_channels=c, | ||
kernel_size=1, | ||
padding=0, | ||
stride=1, | ||
groups=1, | ||
bias=True, | ||
) | ||
|
||
self.norm1 = LayerNorm2d(c) | ||
self.norm2 = LayerNorm2d(c) | ||
|
||
self.dropout1 = ( | ||
nn.Dropout(drop_out_rate) if drop_out_rate > 0.0 else nn.Identity() | ||
) | ||
self.dropout2 = ( | ||
nn.Dropout(drop_out_rate) if drop_out_rate > 0.0 else nn.Identity() | ||
) | ||
|
||
self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | ||
self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True) | ||
|
||
def forward(self, inp): | ||
x = inp | ||
|
||
x = self.norm1(x) | ||
|
||
x = self.conv1(x) | ||
x = self.conv2(x) | ||
x = self.sg(x) | ||
x = x * self.sca(x) | ||
x = self.conv3(x) | ||
|
||
x = self.dropout1(x) | ||
|
||
y = inp + x * self.beta | ||
|
||
x = self.conv4(self.norm2(y)) | ||
x = self.sg(x) | ||
x = self.conv5(x) | ||
|
||
x = self.dropout2(x) | ||
|
||
return y + x * self.gamma | ||
|
||
|
||
class NAFNet(nn.Module): | ||
def __init__( | ||
self, | ||
img_channel: int = 3, | ||
width: int = 16, | ||
middle_blk_num: int = 1, | ||
enc_blk_nums: list[int] = [], | ||
dec_blk_nums: list[int] = [], | ||
): | ||
super().__init__() | ||
|
||
self.intro = nn.Conv2d( | ||
in_channels=img_channel, | ||
out_channels=width, | ||
kernel_size=3, | ||
padding=1, | ||
stride=1, | ||
groups=1, | ||
bias=True, | ||
) | ||
self.ending = nn.Conv2d( | ||
in_channels=width, | ||
out_channels=img_channel, | ||
kernel_size=3, | ||
padding=1, | ||
stride=1, | ||
groups=1, | ||
bias=True, | ||
) | ||
|
||
self.encoders = nn.ModuleList() | ||
self.decoders = nn.ModuleList() | ||
self.middle_blks = nn.ModuleList() | ||
self.ups = nn.ModuleList() | ||
self.downs = nn.ModuleList() | ||
|
||
chan = width | ||
for num in enc_blk_nums: | ||
self.encoders.append(nn.Sequential(*[NAFBlock(chan) for _ in range(num)])) | ||
self.downs.append(nn.Conv2d(chan, 2 * chan, 2, 2)) | ||
chan = chan * 2 | ||
|
||
self.middle_blks = nn.Sequential( | ||
*[NAFBlock(chan) for _ in range(middle_blk_num)] | ||
) | ||
|
||
for num in dec_blk_nums: | ||
self.ups.append( | ||
nn.Sequential( | ||
nn.Conv2d(chan, chan * 2, 1, bias=False), nn.PixelShuffle(2) | ||
) | ||
) | ||
chan = chan // 2 | ||
self.decoders.append(nn.Sequential(*[NAFBlock(chan) for _ in range(num)])) | ||
|
||
self.padder_size = 2 ** len(self.encoders) | ||
|
||
def forward(self, inp): | ||
_, _, H, W = inp.shape | ||
inp = self.check_image_size(inp) | ||
|
||
x = self.intro(inp) | ||
|
||
encs = [] | ||
|
||
for encoder, down in zip(self.encoders, self.downs): | ||
x = encoder(x) | ||
encs.append(x) | ||
x = down(x) | ||
|
||
x = self.middle_blks(x) | ||
|
||
for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]): | ||
x = up(x) | ||
x = x + enc_skip | ||
x = decoder(x) | ||
|
||
x = self.ending(x) | ||
x = x + inp | ||
|
||
return x[:, :, :H, :W] | ||
|
||
def check_image_size(self, x): | ||
_, _, h, w = x.size() | ||
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size | ||
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size | ||
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h)) | ||
return x |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,44 @@ | ||
import torch | ||
import torch.nn as nn | ||
|
||
|
||
class LayerNormFunction(torch.autograd.Function): | ||
@staticmethod | ||
def forward(ctx, x, weight, bias, eps): # type: ignore | ||
ctx.eps = eps | ||
_N, C, _H, _W = x.size() | ||
mu = x.mean(1, keepdim=True) | ||
var = (x - mu).pow(2).mean(1, keepdim=True) | ||
y = (x - mu) / (var + eps).sqrt() | ||
ctx.save_for_backward(y, var, weight) | ||
y = weight.view(1, C, 1, 1) * y + bias.view(1, C, 1, 1) | ||
return y | ||
|
||
@staticmethod | ||
def backward(ctx, grad_output): # type: ignore | ||
eps = ctx.eps | ||
|
||
_N, C, _H, _W = grad_output.size() | ||
y, var, weight = ctx.saved_variables | ||
g = grad_output * weight.view(1, C, 1, 1) | ||
mean_g = g.mean(dim=1, keepdim=True) | ||
|
||
mean_gy = (g * y).mean(dim=1, keepdim=True) | ||
gx = 1.0 / torch.sqrt(var + eps) * (g - y * mean_gy - mean_g) | ||
return ( | ||
gx, | ||
(grad_output * y).sum(dim=3).sum(dim=2).sum(dim=0), | ||
grad_output.sum(dim=3).sum(dim=2).sum(dim=0), | ||
None, | ||
) | ||
|
||
|
||
class LayerNorm2d(nn.Module): | ||
def __init__(self, channels, eps=1e-6): | ||
super().__init__() | ||
self.register_parameter("weight", nn.Parameter(torch.ones(channels))) | ||
self.register_parameter("bias", nn.Parameter(torch.zeros(channels))) | ||
self.eps = eps | ||
|
||
def forward(self, x): | ||
return LayerNormFunction.apply(x, self.weight, self.bias, self.eps) |
Oops, something went wrong.