Skip to content

Commit

Permalink
Merge pull request #381 from muupan/drop-hacking
Browse files Browse the repository at this point in the history
Drop hacking
  • Loading branch information
toslunar authored Jan 16, 2019
2 parents 5af6957 + f0db036 commit 7163952
Show file tree
Hide file tree
Showing 4 changed files with 16 additions and 16 deletions.
2 changes: 1 addition & 1 deletion .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -21,7 +21,7 @@ install:
# atari_py==0.1.4 causes an error
- pip install atari_py==0.1.1
- pip install autopep8
- pip install hacking
- pip install flake8
- pip install coveralls
- pip install opencv-python
- pip install pybullet
Expand Down
4 changes: 2 additions & 2 deletions CONTRIBUTING.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,9 +22,9 @@ To test examples, run `test_examples.sh [gpu device id]`. `-1` would run example

## Coding style

We use PEP8. To check your code, use `autopep8` and `flake8` command installed by `hacking` package.
We use PEP8. To check your code, use `autopep8` and `flake8` packages.
```
$ pip install autopep8 hacking
$ pip install autopep8 flake8
$ autopep8 --diff path/to/your/code.py
$ flake8 path/to/your/code.py
```
Expand Down
2 changes: 1 addition & 1 deletion requirements-dev.txt
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
-r requirements.txt
autopep8
atari_py
hacking
flake8
mock
opencv-python
pytest
Expand Down
24 changes: 12 additions & 12 deletions tests/links_tests/test_noisy_linear.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,34 +21,34 @@
class TestFactorizedNoisyLinear(unittest.TestCase):
def setUp(self):
mu = chainer.links.Linear(*self.size_args, nobias=self.nobias)
self.l = noisy_linear.FactorizedNoisyLinear(mu)
self.linear = noisy_linear.FactorizedNoisyLinear(mu)

def _test_calls(self, xp):
x_data = xp.arange(12).astype(numpy.float32).reshape((2, 6))
x = chainer.Variable(x_data)
self.l(x)
self.l(x_data + 1)
self.l(x_data.reshape((2, 3, 2)))
self.linear(x)
self.linear(x_data + 1)
self.linear(x_data.reshape((2, 3, 2)))

def test_calls_cpu(self):
self._test_calls(numpy)

@attr.gpu
def test_calls_gpu(self):
self.l.to_gpu(0)
self.linear.to_gpu(0)
self._test_calls(cuda.cupy)

@attr.gpu
def test_calls_gpu_after_to_gpu(self):
mu = self.l.mu
mu = self.linear.mu
mu.to_gpu(0)
self.l = noisy_linear.FactorizedNoisyLinear(mu)
self.linear = noisy_linear.FactorizedNoisyLinear(mu)
self._test_calls(cuda.cupy)

def _test_randomness(self, xp):
x = xp.random.standard_normal((10, 6)).astype(numpy.float32)
y1 = self.l(x).array
y2 = self.l(x).array
y1 = self.linear(x).array
y2 = self.linear(x).array
d = float(xp.mean(xp.square(y1 - y2)))

# The parameter name suggests that
Expand All @@ -72,20 +72,20 @@ def test_randomness_cpu(self):
@attr.gpu
@condition.retry(3)
def test_randomness_gpu(self):
self.l.to_gpu(0)
self.linear.to_gpu(0)
self._test_randomness(cuda.cupy)

def _test_non_randomness(self, xp):
# Noises should be the same in a batch
x0 = xp.random.standard_normal((1, 6)).astype(numpy.float32)
x = xp.broadcast_to(x0, (2, 6))
y = self.l(x).array
y = self.linear(x).array
xp.testing.assert_allclose(y[0], y[1], rtol=1e-4)

def test_non_randomness_cpu(self):
self._test_non_randomness(numpy)

@attr.gpu
def test_non_randomness_gpu(self):
self.l.to_gpu(0)
self.linear.to_gpu(0)
self._test_non_randomness(cuda.cupy)

0 comments on commit 7163952

Please sign in to comment.