Skip to content
/ LSTM Public
forked from dansoutner/LSTM

LSTM Neural Network in Python and Cython, used for language modelling

Notifications You must be signed in to change notification settings

chjptc/LSTM

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LSTM

Project currently abandoned, similar toolkit for computing on GPU in LSTMLM repo.

LSTM Neural Network in Python and Cython, used for language modelling

Based on LSTM RNN, model proposed by Jürgen Schmidhuber http://www.idsia.ch/~juergen/ Inspired by RNN LM toolkit by Tomas Mikolov http://www.fit.vutbr.cz/~imikolov/rnnlm/

Implemented by Daniel Soutner, Department of Cybernetics, University of West Bohemia, Plzen, Czech rep. dsoutner@kky.zcu.cz, 2013

Licensed under the 3-clause BSD.

INSTALLATION:

You will need:

Python libs:

  • numpy
  • argparse (is in python 2.7 and higher)
  • gensim (for LDA extension)

Files:

  • LSTM.py
  • ArpaLM.py
  • setup.py
  • lstm.py
  • fast.pyx
  • lda.py
  • fastonebigheader.h

run python setup.py build_ext --inplace --force

USAGE:

train LSTM LM on text and save

python lstm.py --train train.txt dev.txt test.txt --hidden 100 --save-net example.lstm-lm

sentences are processed independently (net is reset after every sentence), vocabulary limited to example.vocab (word-per-line)

python lstm.py --train train.txt dev.txt test.txt --hidden 100 --save-net example.lstm-lm --independent --vocabulary example.vocab

load net and evaluate on perplexity

python lstm.py --load-net example.lstm-lm --ppl valid2.txt

load net, combine with ARPA LM and evaluate

python lstm.py --load-net example.lstm-lm --ppl valid2.txt --srilm-file ngram.model.arpa --lambda 0.2

load net and rescore nbest list

python lstm.py --load-net example.lstm-lm --nbest-rescore nbest.list --wip 0 --lmw 11

About

LSTM Neural Network in Python and Cython, used for language modelling

Resources

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 70.4%
  • C 29.6%