Skip to content

Commit

Permalink
Updates documentation and vignette to show changes to plotSCEHeatmap …
Browse files Browse the repository at this point in the history
…function

Fixes notes about namespace
  • Loading branch information
Ashastry2 committed Oct 24, 2024
1 parent d91daa2 commit 5017342
Show file tree
Hide file tree
Showing 4 changed files with 84 additions and 31 deletions.
4 changes: 4 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -271,6 +271,7 @@ import(GSVAdata)
import(SingleCellExperiment)
import(eds)
importFrom(BiocParallel,SerialParam)
importFrom(ComplexHeatmap,anno_barplot)
importFrom(S4Vectors,"metadata<-")
importFrom(S4Vectors,metadata)
importFrom(SingleCellExperiment,"counts<-")
Expand Down Expand Up @@ -317,8 +318,11 @@ importFrom(stats,prcomp)
importFrom(stats,quantile)
importFrom(stringr,str_c)
importFrom(stringr,str_replace_all)
importFrom(tibble,column_to_rownames)
importFrom(tibble,remove_rownames)
importFrom(tibble,tibble)
importFrom(tidyr,spread)
importFrom(tidyr,unite)
importFrom(tools,file_ext)
importFrom(utils,head)
importFrom(utils,packageVersion)
17 changes: 13 additions & 4 deletions R/plotSCEHeatmap.R
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,11 @@
#' @param cellIndexBy A single character specifying a column name of
#' \code{colData(inSCE)}, or a vector of the same length as \code{ncol(inSCE)},
#' where we search for the non-rowname cell indices. Default \code{"rownames"}.
#' @param cluster_columns A logical scalar that turns on/off
#' clustering of columns. Default \code{FALSE}. Clustering columns should be turned off when using reduced dim
#' for plotting as it will be sorted by PCs
#' @param cluster_rows A logical scalar that turns on/off clustering of rows.
#' Default \code{FALSE}.
#' @param rowDataName character. The column name(s) in \code{rowData} that need
#' to be added to the annotation. Not applicable for
#' \code{plotSCEDimReduceHeatmap}. Default \code{NULL}.
Expand Down Expand Up @@ -103,7 +108,8 @@
#' @importFrom stringr str_replace_all str_c
#' @importFrom stats prcomp quantile
#' @importFrom dplyr select arrange group_by count ungroup mutate one_of desc
#' @importFrom tidyr spread unite column_to_rownames remove_rownames
#' @importFrom tidyr spread unite
#' @importFrom tibble column_to_rownames remove_rownames
#' @importFrom grid gpar
#' @importFrom ComplexHeatmap anno_barplot
#' @importFrom rlang .data
Expand All @@ -113,6 +119,8 @@ plotSCEHeatmap <- function(inSCE, useAssay = 'logcounts', useReducedDim = NULL,
scale = TRUE, trim = c(-2,2),
featureIndexBy = 'rownames',
cellIndexBy = 'rownames',
cluster_columns = FALSE,
cluster_rows = FALSE,
rowDataName = NULL, colDataName = NULL,
aggregateRow = NULL, aggregateCol = NULL,
featureAnnotations = NULL, cellAnnotations = NULL,
Expand Down Expand Up @@ -282,8 +290,8 @@ plotSCEHeatmap <- function(inSCE, useAssay = 'logcounts', useReducedDim = NULL,
temp_df<-as.data.frame(colData(SCE)[,c(aggregateCol),drop=FALSE]) %>%
unite("new_colnames",1:ncol(.),sep = "_",remove = FALSE) %>%
remove_rownames() %>%
mutate(aggregated_column = new_colnames) %>%
dplyr::select(new_colnames, aggregated_column) %>%
# mutate(aggregated_column = new_colnames) %>%
# dplyr::select(new_colnames, aggregated_column) %>%
column_to_rownames("new_colnames")

colData(SCE)<-DataFrame(temp_df)
Expand Down Expand Up @@ -446,7 +454,8 @@ plotSCEHeatmap <- function(inSCE, useAssay = 'logcounts', useReducedDim = NULL,
show_row_dend = rowDend,
show_column_dend = colDend,
row_dend_reorder = TRUE,
cluster_columns = FALSE,
cluster_columns = cluster_columns,
cluster_rows = cluster_rows,
show_column_names = colLabel,
column_names_gp = grid::gpar(fontsize = colLabelSize),
row_gap = rowGap, column_gap = colGap,
Expand Down
13 changes: 11 additions & 2 deletions man/plotSCEHeatmap.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

81 changes: 56 additions & 25 deletions vignettes/articles/heatmap.Rmd
Original file line number Diff line number Diff line change
Expand Up @@ -207,34 +207,56 @@ Other heatmap settings will also be automatically filled for a DE specific heatm
<div id="console" class="tabcontent">
````

To present the usage of `plotSCEHeatmap()`, we would like to use a small example provided with SCTK.
To present the usage of `plotSCEHeatmap()`, we would like to use a small example provided with SCTK.

**"Raw" plotting**

The minimum setting for `plotSCEHeatmap()` is the input SCE object and the data matrix to plot (default `"logcounts"`). In this way, all cells and features will be presented while no annotation or legend (except the main color scheme) will be shown.

```{R setup, eval=TRUE, message=FALSE, cache=TRUE}
library(singleCellTK)
data("scExample") # This imports SCE object "sce"
sce
```
**"Raw" plotting**
# QC - Remove empty droplets
sce2<-subsetSCECols(sce, colData = c("type != 'EmptyDroplet'"))
The minimum setting for `plotSCEHeatmap()` is the input SCE object and the data matrix to plot (default `"logcounts"`). In this way, all cells and features will be presented while no annotation or legend (except the main color scheme) will be shown.
# Normalize the counts
sce2<-runNormalization(sce2, useAssay = "counts", outAssayName = "logcounts",
normalizationMethod = "logNormCounts",scale = TRUE)
```{R hmFull, eval=TRUE, cache=TRUE}
plotSCEHeatmap(sce, useAssay = "counts")
# plot the data
plotSCEHeatmap(sce2,useAssay = "logcounts",cluster_rows = TRUE, cluster_columns = TRUE)
```

**Subsetting**

SCTK allows relatively flexible approaches to select the cells/features to plot.

The basic way to subset the heatmap is to directly use an index vector that can subset the input SCE object to `featureIndex` and `cellIndex`, including `numeric`, and `logical` vectors, which are widely used, and `character` vector containing the row/col names. Of course, user can directly use a subsetted SCE object as input.
The basic way to subset the heatmap is to directly use an index vector that can subset the input SCE object to `featureIndex` and `cellIndex`, including `numeric`, and `logical` vectors, which are widely used, and `character` vector containing the row/col names. Of course, user can directly use a subsetted SCE object as input. First let's run a simple clustering workflow to identify clusters and find DE genes for each cluster. We can subset the heatmap using this list of DE genes

```{R idxSubset, eval=TRUE, cache=TRUE, message=FALSE,warnings=FALSE, echo=FALSE}
# Run Clustering workflow
set.seed(348389)
sce2 <- runFeatureSelection(sce2, useAssay = "counts")
sce2 <- setTopHVG(sce2, featureSubsetName = "hvf")
sce2 <- runDimReduce(sce2, useAssay = "logcounts", useFeatureSubset = "hvf", scale = TRUE, reducedDimName = "PCA")
sce2 <- runDimReduce(sce2, method = "scaterUMAP", useReducedDim = "PCA", reducedDimName = "UMAP", nComponents = 10)
sce2 <- runScranSNN(inSCE = sce2, useReducedDim = "PCA", nComp = 10, clusterName = "scranSNN_PCA")
# set gene ID as rownames
sce2<-setRowNames(sce2,"feature_name")
```{R idxSubset, eval=TRUE, cache=TRUE}
# Make up random downsampling numeric vector
featureSubset <- sample(nrow(sce), 50)
cellSubset <- sample(ncol(sce), 50)
plotSCEHeatmap(inSCE = sce, useAssay = "counts", featureIndex = featureSubset, cellIndex = cellSubset)
# Find markers for each cluster
sce2 <- runFindMarker(sce2, useAssay = "logcounts", method = "wilcox", cluster = "scranSNN_PCA")
topMarkers <- getFindMarkerTopTable(sce2, topN = 5, log2fcThreshold = 0.5,
fdrThreshold = 0.05, minClustExprPerc = 0.5,
maxCtrlExprPerc = 0.5, minMeanExpr = 0)
# Using feature index to select for genes in topMarkers list
plotSCEHeatmap(sce2,useAssay = "logcounts",rowLabel = TRUE,featureIndex = topMarkers$Gene,cluster_columns = TRUE)
```

````{=html}
Expand All @@ -246,9 +268,11 @@ plotSCEHeatmap(inSCE = sce, useAssay = "counts", featureIndex = featureSubset, c
In a more complex situation, where users might only have a set of identifiers which are not inside the row/col names (i.e. unable to directly subset the SCE object), we provide another approach. The subset, in this situation, can be accessed via specifying a vector that contains the identifiers users have, to `featureIndexBy` or `cellIndexBy`. This specification allows directly giving one column name of `rowData` or `colData`.

```{R indexBy, eval=TRUE, cache=TRUE}
subsetFeatureName <- sample(rowData(sce)$feature_name, 50)
subsetCellBarcode <- sample(sce$cell_barcode, 50)
plotSCEHeatmap(inSCE = sce, useAssay = "counts", featureIndex = subsetFeatureName, featureIndexBy = "feature_name", cellIndex = subsetCellBarcode, cellIndexBy = "cell_barcode")
list_of_FIDs<-c("ENSG00000251562","ENSG00000205542","ENSG00000177954","ENSG00000166710")
plotSCEHeatmap(inSCE = sce2, useAssay = "logcounts", featureIndexBy = "feature_ID", featureIndex = list_of_FIDs, cluster_rows = TRUE, cluster_columns = TRUE, rowLabel = TRUE)
```

````{=html}
Expand All @@ -260,25 +284,21 @@ plotSCEHeatmap(inSCE = sce, useAssay = "counts", featureIndex = subsetFeatureNam
As introduced before, we allow directly using column names of `rowData` or `colData` to attach color bar annotations. To make use of this functionality, pass a `character` vector to `rowDataName` or `colDataName`.

```{R colRowAnn, eval=TRUE, cache=TRUE}
# Make up arbitrary annotation,
rowRandLabel <- c(rep('aa', 100), rep('bb', 100))
rowData(sce)$randLabel <- rowRandLabel
colRandLabel <- c(rep('cc', 195), rep('dd', 195))
colData(sce)$randLabel <- colRandLabel
plotSCEHeatmap(inSCE = sce, useAssay = "counts", featureIndex = featureSubset, cellIndex = cellSubset, rowDataName = "randLabel", colDataName = c("type", "randLabel"))
# Creat new annotation for markers
plotSCEHeatmap(inSCE = sce2, useAssay = "logcounts", featureIndex = topMarkers$Gene, colDataName = c( "scranSNN_PCA"),rowLabel = TRUE, cluster_rows = TRUE, cluster_columns = TRUE)
```

````{=html}
<details>
<summary><b>Customized Annotation</b></summary>
````

Fully customized annotation is also supported, though it can be complexed for users. For the labeling, it is more recommanded to insert the information into `rowData` or `colData` and then make use. For coloring, information should be passed to `featureAnnotationColor` or `cellAnnotationColor`. The argument must be a `list` object with names matching the annotation classes (such as `"randLabel"` and `"type"`); each inner object under a name must be a named vector, with colors as the values and existing categories as the names. The working instance looks like this:
Fully customized annotation is also supported, though it can be complex for users. For the labeling, it is more recommended to insert the information into `rowData` or `colData` and then make use. For coloring, information should be passed to `featureAnnotationColor` or `cellAnnotationColor`. The argument must be a `list` object with names matching the annotation classes (such as `"randLabel"` and `"type"`); each inner object under a name must be a named vector, with colors as the values and existing categories as the names. The working instance looks like this:

```{R colorEG, eval=FALSE, echo=FALSE}
colAnnotattionColor <- list(
sample = c(pbmc_4k = "FF4D4D"),
type = c(Singlet = "#4DFFFF", Doublet = "#FFC04D", EmptyDroplet = "#4D4DFF")
type = c(Singlet = "#4DFFFF", Doublet = "#FFC04D")
)
```

Expand All @@ -291,7 +311,18 @@ colAnnotattionColor <- list(
**1. Grouping/Splitting** In some cases, it might be better to do a "semi-heatmap" (i.e. split the rows/columns first and cluster them within each group) to visualize some expression pattern, such as evaluating the differential expression. For this need, use `rowSplitBy` or `colSplitBy`, and the arguments must be a `character` vector that is a subset of the specified annotation.

```{R split, eval=TRUE, cache=TRUE}
plotSCEHeatmap(inSCE = sce, useAssay = "counts", featureIndex = featureSubset, cellIndex = cellSubset, rowDataName = "randLabel", colDataName = c("type", "randLabel"), rowSplitBy = "randLabel", colSplitBy = "type")
# Create a new label in the rowData using the cluster markers
data.frame(rowData(sce2)) %>%
left_join(topMarkers, by = c("feature_name" = "Gene")) %>%
rename("cluster_markers" = "scranSNN_PCA") -> new_row_data
rownames(new_row_data)<-new_row_data$feature_name
rowData(sce2)<-new_row_data
plotSCEHeatmap(inSCE = sce2, useAssay = "logcounts", featureIndex = topMarkers$Gene, colDataName = c("type"), aggregateCol = "scranSNN_PCA", rowGap = grid::unit(2, 'mm'),rowLabel = TRUE, rowDataName = "cluster_markers", rowSplitBy = "cluster_markers" )
```

**2. Cell/Feature Labeling** Text labels of features or cells can be added via `rowLabel` or `colLabel`. Use `TRUE` or `FALSE` to specify whether to show the `rownames` or `colnames` of the subsetted SCE object. Additionally, giving a single string of a column name of `rowData` or `colData` can enable the labeling of the annotation. Furthermore, users can directly throw a character vector to the parameter, with the same length of either the full SCE object or the subsetted.
Expand All @@ -301,7 +332,7 @@ plotSCEHeatmap(inSCE = sce, useAssay = "counts", featureIndex = featureSubset, c
**4. Row/Column titles** The row title (`"Genes"`) and column title (`"Cells"`) can be changed or removed by passing a string or `NULL` to `rowTitle` or `colTitle`, respectively.

```{R label, eval=TRUE, cache=TRUE}
plotSCEHeatmap(inSCE = sce, useAssay = "counts", featureIndex = featureSubset, cellIndex = cellSubset, rowLabel = "feature_name", colLabel = seq(ncol(sce)), colDend = FALSE, rowTitle = "Downsampled features")
plotSCEHeatmap(inSCE = sce2, useAssay = "logcounts", featureIndex = topMarkers$Gene, rowGap = grid::unit(2, 'mm'),rowLabel = TRUE, rowTitle = "Markers",colTitle = "Clusters", cluster_columns = TRUE, cluster_rows = TRUE)
```

There are still some parameters not mentioned here, but they are not frequently used. Please refer to `?plotSCEHeatmap` as well as `?ComplexHeatmap::Heatmap`.
Expand Down

0 comments on commit 5017342

Please sign in to comment.