Skip to content

GPU-accelerated ORB SLAM 2 for RGB-D vision. Works on Jetson Tx2 in real time.

License

Unknown, GPL-3.0 licenses found

Licenses found

Unknown
LICENSE.txt
GPL-3.0
License-gpl.txt
Notifications You must be signed in to change notification settings

connorsoohoo/ORB-SLAM2-GPU-RGBD

 
 

Repository files navigation

ORB-SLAM2-GPU-RGBD

This is an optimized version of the ORB SLAM2 library and yunchih's monocular GPU acceleration to include RGB-D vision. This optimization runs in real time on the Jetson TX2. At max clock rate we achieve around 18-20 fps on average.

Usage

We use the Intel RealSense D435 camera to supply RGB-D vision. Refer to the installation on how to install the camera drivers and library onto the TX2.

./build/rgbd_real_sense Vocabulary/ORBvoc.txt RealSense_GPU/rgbd_real_sense.yaml

There are also files to run monocular and stereo vision.

./build/mono_real_sense Vocabulary/ORBvoc.txt RealSense_GPU/mono_real_sense.yaml
./build/stereo_real_sense Vocabulary/ORBvoc.txt RealSense_GPU/stereo_real_sense.yaml

To enable verbose commands, like clocking times of bottleneck hotspots or printing velocities, check the Utils.hpp file in include for the verbose flag.

//Change from 0 to 1 to enable clock timing of various functions
#define UTIL_VERBOSE 0

Installation

Run the following two scripts to install the dependencies.

chmod +x get_dependencies.sh
./get_dependencies.sh
chmod +x post_reset_get_dependencies.sh
./post_reset_get_dependencies.sh

The main issue with the install is that apt says that it is unable to lock the administration directory. This usually happens if 'Update Manager' is running in parallel for any update check or install as the update manager process places its own lock. The best course of action is just to wait a couple minutes and then try again, and then reboot and try again. consult one of these solutions.

These scripts install the dependencies successfully with the exception of librealsense, whose installation depends on the environment. Consult the JetsonHacks repo for more thorough installation details of the Real Sense library and camera drivers. Folks in the AMBER Lab only need to use the buildLibrealsense2TX library in the Dropbox, which this script defaults to and applies the necessary patches to the kernel in the previously run install script. Otherwise, switch the comments in the script when installing the librealsense library and drivers. Note you will have to patch the kernel to be able to run the RealSense camera on the TX2. Moreover, the Real Sense cameras prefer a USB 3.1 connection to supply steady RGB-D video, so be sure the connections use this type of connector.


ORB-SLAM2-GPU

This is a fork of Raul Mur-Artal's ORB-SLAM2, on which we rewrite hot paths with CUDA. Our optimization enables us to run the algorithm in real time on a Nvidia's Jetson TX1.

Following is from the original README of ORB-SLAM2

Introduction

ORB-SLAM2 is a real-time SLAM library for Monocular, Stereo and RGB-D cameras that computes the camera trajectory and a sparse 3D reconstruction (in the stereo and RGB-D case with true scale). It is able to detect loops and relocalize the camera in real time. We provide examples to run the SLAM system in the KITTI dataset as stereo or monocular, and in the TUM dataset as RGB-D or monocular. We also provide a ROS node to process live monocular or RGB-D streams. The library can be compiled without ROS. ORB-SLAM2 provides a GUI to change between a SLAM Mode and Localization Mode, see section 9 of this document.

#####Videos showing ORB-SLAM2: Tsukuba Dataset KITTI Dataset TUM RGBD Dataset EuRoC Dataset (V1_02, V1_03) EuRoC Dataset (V1_02, V1_03)

Notice for ORB-SLAM Monocular users: The monocular capabilities of ORB-SLAM2 compared to ORB-SLAM Monocular are similar. However in ORB-SLAM2 we apply a full bundle adjustment after a loop closure, the extraction of ORB is slightly different (trying to improve the dispersion on the image) and the tracking is also slightly faster. The GUI of ORB-SLAM2 also provides you new capabilities as the modes mentioned above and a reset button. We recommend you to try this new software :)

###Related Publications:

[1] Raúl Mur-Artal, J. M. M. Montiel and Juan D. Tardós. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Transactions on Robotics, vol. 31, no. 5, pp. 1147-1163, 2015. (2015 IEEE Transactions on Robotics Best Paper Award). PDF.

[2] Dorian Gálvez-López and Juan D. Tardós. Bags of Binary Words for Fast Place Recognition in Image Sequences. IEEE Transactions on Robotics, vol. 28, no. 5, pp. 1188-1197, 2012. PDF

#1. License

ORB-SLAM2 is released under a GPLv3 license. For a list of all code/library dependencies (and associated licenses), please see Dependencies.md.

For a closed-source version of ORB-SLAM2 for commercial purposes, please contact the authors: orbslam (at) unizar (dot) es.

If you use ORB-SLAM2 in an academic work, please cite:

@article{murTRO2015,
  title={{ORB-SLAM}: a Versatile and Accurate Monocular {SLAM} System},
  author={Mur-Artal, Ra\'ul, Montiel, J. M. M. and Tard\'os, Juan D.},
  journal={IEEE Transactions on Robotics},
  volume={31},
  number={5},
  pages={1147--1163},
  doi = {10.1109/TRO.2015.2463671},
  year={2015}
 }

#2. Prerequisites We have tested the library in Ubuntu 12.04 and 14.04, but it should be easy to compile in other platforms. A powerful computer (e.g. i7) will ensure real-time performance and provide more stable and accurate results.

C++11 or C++0x Compiler

We use the new thread and chrono functionalities of C++11.

Pangolin

We use Pangolin for visualization and user interface. Dowload and install instructions can be found at: https://github.com/stevenlovegrove/Pangolin.

OpenCV

We use OpenCV to manipulate images and features. Dowload and install instructions can be found at: http://opencv.org. Required at leat 2.4.3. Tested with OpenCV 2.4.11.

Eigen3

Required by g2o (see below). Download and install instructions can be found at: http://eigen.tuxfamily.org. Required at least 3.1.0.

BLAS and LAPACK

BLAS and LAPACK libraries are requiered by g2o (see below). On ubuntu:

sudo apt-get install libblas-dev
sudo apt-get install liblapack-dev

DBoW2 and g2o (Included in Thirdparty folder)

We use modified versions of the DBoW2 library to perform place recognition and g2o library to perform non-linear optimizations. Both modified libraries (which are BSD) are included in the Thirdparty folder.

ROS (optional)

We provide some examples to process the live input of a monocular, stereo or RGB-D camera using ROS. Building these examples is optional. In case you want to use ROS, a version Hydro or newer is needed.

#3. Building ORB-SLAM2 library and TUM/KITTI examples

Clone the repository:

git clone https://github.com/raulmur/ORB_SLAM2.git ORB_SLAM2

We provide a script build.sh to build the Thirdparty libraries and ORB-SLAM2. Please make sure you have installed all required dependencies (see section 2). Execute:

cd ORB_SLAM2
chmod +x build.sh
./build.sh

This will create libORB_SLAM2.so at lib folder and the executables mono_tum, mono_kitti, rgbd_tum, stereo_kitti in Examples folder.

#4. Monocular Examples

TUM Dataset

  1. Download a sequence from http://vision.in.tum.de/data/datasets/rgbd-dataset/download and uncompress it.

  2. Execute the following command. Change TUMX.yaml to TUM1.yaml,TUM2.yaml or TUM3.yaml for freiburg1, freiburg2 and freiburg3 sequences respectively. Change PATH_TO_SEQUENCE_FOLDERto the uncompressed sequence folder.

./Examples/Monocular/mono_tum Vocabulary/ORBvoc.txt Examples/Monocular/TUMX.yaml PATH_TO_SEQUENCE_FOLDER

KITTI Dataset

  1. Download the dataset (grayscale images) from http://www.cvlibs.net/datasets/kitti/eval_odometry.php

  2. Execute the following command. Change KITTIX.yamlby KITTI00-02.yaml, KITTI03.yaml or KITTI04-12.yaml for sequence 0 to 2, 3, and 4 to 12 respectively. Change PATH_TO_DATASET_FOLDER to the uncompressed dataset folder. Change SEQUENCE_NUMBER to 00, 01, 02,.., 11.

./Examples/Monocular/mono_kitti Vocabulary/ORBvoc.txt Examples/Monocular/KITTIX.yaml PATH_TO_DATASET_FOLDER/dataset/sequences/SEQUENCE_NUMBER

#5. Stereo Example

KITTI Dataset

  1. Download the dataset (grayscale images) from http://www.cvlibs.net/datasets/kitti/eval_odometry.php

  2. Execute the following command. Change KITTIX.yamlto KITTI00-02.yaml, KITTI03.yaml or KITTI04-12.yaml for sequence 0 to 2, 3, and 4 to 12 respectively. Change PATH_TO_DATASET_FOLDER to the uncompressed dataset folder. Change SEQUENCE_NUMBER to 00, 01, 02,.., 11.

./Examples/Stereo/stereo_kitti Vocabulary/ORBvoc.txt Examples/Stereo/KITTIX.yaml PATH_TO_DATASET_FOLDER/dataset/sequences/SEQUENCE_NUMBER

#6. RGB-D Example

TUM Dataset

  1. Download a sequence from http://vision.in.tum.de/data/datasets/rgbd-dataset/download and uncompress it.

  2. Associate RGB images and depth images using the python script associate.py. We already provide associations for some of the sequences in Examples/RGB-D/associations/. You can generate your own associations file executing:

python associate.py PATH_TO_SEQUENCE/rgb.txt PATH_TO_SEQUENCE/depth.txt > associations.txt
  1. Execute the following command. Change TUMX.yaml to TUM1.yaml,TUM2.yaml or TUM3.yaml for freiburg1, freiburg2 and freiburg3 sequences respectively. Change PATH_TO_SEQUENCE_FOLDERto the uncompressed sequence folder. Change ASSOCIATIONS_FILE to the path to the corresponding associations file.
./Examples/RGB-D/rgbd_tum Vocabulary/ORBvoc.txt Examples/RGB-D/TUMX.yaml PATH_TO_SEQUENCE_FOLDER ASSOCIATIONS_FILE

#7. ROS Examples

Building the nodes for mono, stereo and RGB-D

  1. Add the path including Examples/ROS/ORB_SLAM2 to the ROS_PACKAGE_PATH environment variable. Open .bashrc file and add at the end the following line. Replace PATH by the folder where you cloned ORB_SLAM2:
export ROS_PACKAGE_PATH=${ROS_PACKAGE_PATH}:PATH/ORB_SLAM2/Examples/ROS
  1. Go to Examples/ROS/ORB_SLAM2 folder and execute:
mkdir build
cd build
cmake .. -DROS_BUILD_TYPE=Release
make -j

Running Monocular Node

For a monocular input from topic /camera/image_raw run node ORB_SLAM2/Mono. You will need to provide the vocabulary file and a settings file. See the monocular examples above.

rosrun ORB_SLAM2 Mono PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE

Running Stereo Node

For a stereo input from topic /camera/left/image_raw and /camera/right/image_raw run node ORB_SLAM2/Stereo. You will need to provide the vocabulary file and a settings file. If you provide rectification matrices (see Examples/Stereo/EuRoC.yaml example), the node will recitify the images online, otherwise images must be pre-rectified.

rosrun ORB_SLAM2 Stereo PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE ONLINE_RECTIFICATION

Example: Download a rosbag (e.g. V1_01_easy.bag) from the EuRoC dataset (http://projects.asl.ethz.ch/datasets/doku.php?id=kmavvisualinertialdatasets). Open 3 tabs on the terminal and run the following command at each tab:

roscore
rosrun ORB_SLAM2 Stereo Vocabulary/ORBvoc.txt Examples/Stereo/EuRoC.yaml true
rosbag play --pause V1_01_easy.bag /cam0/image_raw:=/camera/left/image_raw /cam1/image_raw:=/camera/right/image_raw

Once ORB-SLAM2 has loaded the vocabulary, press space in the rosbag tab. Enjoy!. Note: a powerful computer is required to run the most exigent sequences of this dataset.

Running RGB_D Node

For an RGB-D input from topics /camera/rgb/image_raw and /camera/depth_registered/image_raw, run node ORB_SLAM2/RGBD. You will need to provide the vocabulary file and a settings file. See the RGB-D example above.

rosrun ORB_SLAM2 RGBD PATH_TO_VOCABULARY PATH_TO_SETTINGS_FILE

#8. Processing your own sequences You will need to create a settings file with the calibration of your camera. See the settings file provided for the TUM and KITTI datasets for monocular, stereo and RGB-D cameras. We use the calibration model of OpenCV. See the examples to learn how to create a program that makes use of the ORB-SLAM2 library and how to pass images to the SLAM system. Stereo input must be synchronized and rectified. RGB-D input must be synchronized and depth registered.

#9. SLAM and Localization Modes You can change between the SLAM and Localization mode using the GUI of the map viewer.

SLAM Mode

This is the default mode. The system runs in parallal three threads: Tracking, Local Mapping and Loop Closing. The system localizes the camera, builds new map and tries to close loops.

Localization Mode

This mode can be used when you have a good map of your working area. In this mode the Local Mapping and Loop Closing are deactivated. The system localizes the camera in the map (which is no longer updated), using relocalization if needed.

About

GPU-accelerated ORB SLAM 2 for RGB-D vision. Works on Jetson Tx2 in real time.

Topics

Resources

License

Unknown, GPL-3.0 licenses found

Licenses found

Unknown
LICENSE.txt
GPL-3.0
License-gpl.txt

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C++ 89.3%
  • Cuda 5.4%
  • CMake 3.4%
  • Makefile 1.1%
  • Other 0.8%