Skip to content

A survey of semantics styles in Coq, from natural semantics through structural operational, axiomatic, and denotational semantics, to abstract interpretation [maintainer=@k4rtik]

License

Notifications You must be signed in to change notification settings

coq-community/semantics

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

73 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Semantics

Docker CI Contributing Code of Conduct Zulip DOI

This is a survey of programming language semantics styles for a miniature example of a programming language, with their encoding in Coq, the proofs of equivalence of different styles, and the proof of soundess of tools obtained from axiomatic semantics or abstract interpretation. The tools can be run inside Coq, thus making them available for proof by reflection, and the code can also be extracted and connected to a yacc-based parser, thanks to the use of a functor parameterized by a module type of strings. A hand-written parser is also provided in Coq, but there are no proofs associated.

Meta

Building and installation instructions

The easiest way to install the latest released version of Semantics is via OPAM:

opam repo add coq-released https://coq.inria.fr/opam/released
opam install coq-semantics

To instead build and install manually, do:

git clone https://github.com/coq-community/semantics.git
cd semantics
make   # or make -j <number-of-cores-on-your-machine> 
make install

Description

These files describe several approaches to the description of a simple programming language using the Coq system.

syntax.v the constructs of the language

little.v operational semantics in three forms: natural semantics (also know as big-step semantics), structural operational semantics (small-step semantics), and a functional implementation of the latter. This file also contains the proof that the three point descriptions are equivalent.

function_cpo.v A description of partial functions and Tarski's fixpoint theorem.

constructs.v A proof that the constructs of the programming language are continuous, with respect to the notion of continuity given in function_cpo

denot.v A description of the programming language in the style of denotational semantics. This file also contains the proof that denotational semantics and natural semantics are equivalent.

axiom.v Hoare triples and Dijkstra's weakest pre-condition calculus, in the form of a verification condition generator. This file also contains a proof that the axiomatic semantics (base on Hoare triples) and the vcg are sound with respect to the natural semantics.

intervals.v A notion of intervals to be used in an abstract interpreter. A type of extended integers is defined to incorporate infinities (minfty and pinfty) and intervals are defined as pairs of extended integers (this accepts the meaningless intervals of the form (minfty, minfty), but they do not cause any problem). Different forms additions and comparisons are defined for extended integers and intervals.

abstract_i.v An abstract interpreter defined as a parameterized module over a notion of abstract domain. This abstract interpreter is instantiated with the intervals defined above.

little_w_string.v The whole development is defined as a set of modules parameterized by a notion of strings. This file instantiate the development on the string package provided in Coq.

parser.v A parser for the language and assertions, which can be hooked on all the tools. This is nice for the examples. There are no proofs on this parser, and when parsing fails, it simply returns the "skip" program.

example.v, example2.v, ex_i.v These are examples where the abstract interpreter, and the vcg are used in a reflective manner directly inside Coq.

extract_interpret.v This file contains the directives to extract code from the proved tools.

asm.v This file contains the description of a simple assembly language and a compiler from the little language to this assembly language. The machine modeled in this assembly language is a stack machine with a random access memory, both modeled as lists of integers. This assembly language has an unconditional branching instruction goto, and a conditional branching instruction branch, which interprets the top value of the stack as a boolean value, through the coercion from Z to bool given by Z.b2z. If the top value is Z.b2z true, then branching at the prescribed address occurs, otherwise control flow passes to the next instruction in the program. The compiler comes with a partial proof of correctness, expressing that when an instruction executes and terminates, the compiled expression can also be executed in a memory faithful to the environment, and execution proceeds until the program counter reaches the end of the compiled expression.

This development also comes with ml files used to encapsulate the extracted code.

str_little.ml A definition of the module of strings as needed for the extracted code, but this module is based on ocaml native strings.

parse_little.mly A parser description using the yacc extension of ocaml llex.mll the lexical analyser to be used with the parser.

little.ml basic encapsulation: a single command is generated, with four options:

  • -interpreter (just to execute a program)
  • -vcg (to generate the conditions for the verification of an annotated program)
  • -vcg-coq (to generatedthe conditions in coq syntax)
  • -static-analysis (to run the abstract interpreter).

About

A survey of semantics styles in Coq, from natural semantics through structural operational, axiomatic, and denotational semantics, to abstract interpretation [maintainer=@k4rtik]

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published