INFO about the dataset.
We have logged the entire dataset as W&B Artifacts for building easy data pipeline for our study. This also enabled us to download the dataset on any machine easily. Here's the Kaggle kernel used to log them as W&B Artifacts: Save the Dataset as W&B Artifacts.
[Add chart of the dataset with associated W&B Tables view]
- Clone the repo:
git clone https://github.com/cosmo3769/SSL-study
- Move into the repo:
cd SSL-study
- Run:
python setup.py install
. If you want to develop do:pip install -e .
- Run:
pip install --upgrade -r requirements.txt
- Run:
bash ssl_study/utils/utils.sh
To train the supervised pipeline that trains a baseline image classifier using labeled training dataset:
python train.py --config configs/baseline.py
--wandb
: Use this flag to log the metrics to Weights and Biases--log_model
: Use this flag for model checkpointing. The checkpoints are logged to W&B Artifacts.--log_eval
: Use this flag to log model prediction using W&B Tables.
To test your trained model, run:
python test.py --config configs/test_config.py
- Run:
python sweep_train.py --config configs/baseline.py
- Run:
wandb sweep /configs/sweep_config.yaml
- Run:
wandb agent entity-name/project-name/sweep-id
NOTE
- Change the
entity-name
,project-name
, andsweep-id
according to yourentity-name
,project-name
, andsweep-id
. - You will get your sweep-id by running
wandb sweep /configs/sweep_config.yaml
as mentioned above.
To run a particular test: python -m unittest tests/test_*.py
Run: python simclrv1_pretext.py --config configs/simclrv1_pretext_config.py --wandb --log_model
Run: python simclrv1_downstream.py --config configs/simclrv1_downstream_config.py --model_artifact_path <path/to/model/artifact>
@misc{su2021semisupervised,
title={The Semi-Supervised iNaturalist-Aves Challenge at FGVC7 Workshop},
author={Jong-Chyi Su and Subhransu Maji},
year={2021},
eprint={2103.06937},
archivePrefix={arXiv},
primaryClass={cs.CV}
}