Skip to content

🔥 Pure tensorflow Implement of YOLOv3 with support to train your own dataset

License

MIT, Unknown licenses found

Licenses found

MIT
LICENSE
Unknown
LICENSE.fuck
Notifications You must be signed in to change notification settings

couldn/tensorflow-yolov3

 
 

Repository files navigation

🆕 Are you looking for a new YOLOv3 implemented by TF2.0 ?

If you hate the fucking tensorflow1.x very much, no worries! I have implemented a new YOLOv3 repo with TF2.0, and also made a chinese blog on how to implement YOLOv3 object detector from scratch.
code | blog | issue

part 1. Quick start

  1. Clone this file
$ git clone https://github.com/YunYang1994/tensorflow-yolov3.git
  1. You are supposed to install some dependencies before getting out hands with these codes.
$ cd tensorflow-yolov3
$ pip install -r ./docs/requirements.txt
  1. Exporting loaded COCO weights as TF checkpoint(yolov3_coco.ckpt)【BaiduCloud
$ cd checkpoint
$ wget https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz
$ tar -xvf yolov3_coco.tar.gz
$ cd ..
$ python convert_weight.py
$ python freeze_graph.py
  1. Then you will get some .pb files in the root path., and run the demo script
$ python image_demo.py
$ python video_demo.py # if use camera, set video_path = 0

part 2. Train your own dataset

Two files are required as follows:

xxx/xxx.jpg 18.19,6.32,424.13,421.83,20 323.86,2.65,640.0,421.94,20 
xxx/xxx.jpg 48,240,195,371,11 8,12,352,498,14
# image_path x_min, y_min, x_max, y_max, class_id  x_min, y_min ,..., class_id 
# make sure that x_max < width and y_max < height
person
bicycle
car
...
toothbrush

2.1 Train on VOC dataset

Download VOC PASCAL trainval and test data

$ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtrainval_06-Nov-2007.tar
$ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2012/VOCtrainval_11-May-2012.tar
$ wget http://host.robots.ox.ac.uk/pascal/VOC/voc2007/VOCtest_06-Nov-2007.tar

Extract all of these tars into one directory and rename them, which should have the following basic structure.


VOC           # path:  /home/yang/dataset/VOC
├── test
|    └──VOCdevkit
|        └──VOC2007 (from VOCtest_06-Nov-2007.tar)
└── train
     └──VOCdevkit
         └──VOC2007 (from VOCtrainval_06-Nov-2007.tar)
         └──VOC2012 (from VOCtrainval_11-May-2012.tar)
                     
$ python scripts/voc_annotation.py --data_path /home/yang/test/VOC

Then edit your ./core/config.py to make some necessary configurations

__C.YOLO.CLASSES                = "./data/classes/voc.names"
__C.TRAIN.ANNOT_PATH            = "./data/dataset/voc_train.txt"
__C.TEST.ANNOT_PATH             = "./data/dataset/voc_test.txt"

Here are two kinds of training method:

(1) train from scratch:
$ python train.py
$ tensorboard --logdir ./data
(2) train from COCO weights(recommend):
$ cd checkpoint
$ wget https://github.com/YunYang1994/tensorflow-yolov3/releases/download/v1.0/yolov3_coco.tar.gz
$ tar -xvf yolov3_coco.tar.gz
$ cd ..
$ python convert_weight.py --train_from_coco
$ python train.py

2.2 Evaluate on VOC dataset

$ python evaluate.py
$ cd mAP
$ python main.py -na

the mAP on the VOC2012 dataset:

part 3. Stargazers over time

Stargazers over time

part 4. Other Implementations

-YOLOv3目标检测有了TensorFlow实现,可用自己的数据来训练

-Stronger-yolo

- Implementing YOLO v3 in Tensorflow (TF-Slim)

- YOLOv3_TensorFlow

- Object Detection using YOLOv2 on Pascal VOC2012

-Understanding YOLO

About

🔥 Pure tensorflow Implement of YOLOv3 with support to train your own dataset

Resources

License

MIT, Unknown licenses found

Licenses found

MIT
LICENSE
Unknown
LICENSE.fuck

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 100.0%