Skip to content

Commit

Permalink
Auto annotation GPU support (#2546)
Browse files Browse the repository at this point in the history
* updated the documentation

* boosting nuclio version to 1.5.8

* fixed bug for png alpha channel

* added support for tensorflow gpu

* fixed typos

* Update cvat/apps/documentation/installation_automatic_annotation.md

Co-authored-by: Andrey Zhavoronkov <andrey.zhavoronkov@intel.com>

* Addressing pr comments - improved documentation and removed code duplication

* removed extra spaces

* Update nuclio to 1.5.8

* fixed typo

* removed extra cpu deployment

* renamed files

Co-authored-by: Andrey Zhavoronkov <andrey.zhavoronkov@intel.com>
  • Loading branch information
jahaniam and Andrey Zhavoronkov authored Dec 15, 2020
1 parent 217a327 commit 8343dd7
Show file tree
Hide file tree
Showing 7 changed files with 121 additions and 38 deletions.
20 changes: 10 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -61,16 +61,16 @@ via its command line tool and Python library.

## Deep learning models for automatic labeling

| Name | Type | Framework |
| ------------------------------------------------------------------------------------------------------- | ---------- | ---------- |
| [Deep Extreme Cut](/serverless/openvino/dextr/nuclio) | interactor | OpenVINO |
| [Faster RCNN](/serverless/tensorflow/faster_rcnn_inception_v2_coco/nuclio) | detector | TensorFlow |
| [Mask RCNN](/serverless/openvino/omz/public/mask_rcnn_inception_resnet_v2_atrous_coco/nuclio) | detector | OpenVINO |
| [YOLO v3](/serverless/openvino/omz/public/yolo-v3-tf/nuclio) | detector | OpenVINO |
| [Text detection v4](/serverless/openvino/omz/intel/text-detection-0004/nuclio) | detector | OpenVINO |
| [Semantic segmentation for ADAS](/serverless/openvino/omz/intel/semantic-segmentation-adas-0001/nuclio) | detector | OpenVINO |
| [Mask RCNN](/serverless/tensorflow/matterport/mask_rcnn/nuclio) | detector | TensorFlow |
| [Object reidentification](/serverless/openvino/omz/intel/person-reidentification-retail-300/nuclio) | reid | OpenVINO |
| Name | Type | Framework | CPU | GPU |
| ------------------------------------------------------------------------------------------------------- | ---------- | ---------- | --- | --- |
| [Deep Extreme Cut](/serverless/openvino/dextr/nuclio) | interactor | OpenVINO | X |
| [Faster RCNN](/serverless/tensorflow/faster_rcnn_inception_v2_coco/nuclio) | detector | TensorFlow | X | X |
| [Mask RCNN](/serverless/openvino/omz/public/mask_rcnn_inception_resnet_v2_atrous_coco/nuclio) | detector | OpenVINO | X |
| [YOLO v3](/serverless/openvino/omz/public/yolo-v3-tf/nuclio) | detector | OpenVINO | X |
| [Text detection v4](/serverless/openvino/omz/intel/text-detection-0004/nuclio) | detector | OpenVINO | X |
| [Semantic segmentation for ADAS](/serverless/openvino/omz/intel/semantic-segmentation-adas-0001/nuclio) | detector | OpenVINO | X |
| [Mask RCNN](/serverless/tensorflow/matterport/mask_rcnn/nuclio) | detector | TensorFlow | X |
| [Object reidentification](/serverless/openvino/omz/intel/person-reidentification-retail-300/nuclio) | reid | OpenVINO | X |

## Online demo: [cvat.org](https://cvat.org)

Expand Down
2 changes: 1 addition & 1 deletion components/serverless/docker-compose.serverless.yml
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,7 @@ version: '3.3'
services:
serverless:
container_name: nuclio
image: quay.io/nuclio/dashboard:1.4.8-amd64
image: quay.io/nuclio/dashboard:1.5.8-amd64
restart: always
networks:
default:
Expand Down
27 changes: 1 addition & 26 deletions cvat/apps/documentation/installation.md
Original file line number Diff line number Diff line change
Expand Up @@ -290,32 +290,7 @@ docker-compose -f docker-compose.yml -f components/analytics/docker-compose.anal
### Semi-automatic and automatic annotation
- You have to install `nuctl` command line tool to build and deploy serverless
functions. Download [the latest release](https://github.com/nuclio/nuclio/releases).
- Create `cvat` project inside nuclio dashboard where you will deploy new
serverless functions and deploy a couple of DL models. Commands below should
be run only after CVAT has been installed using docker-compose because it
runs nuclio dashboard which manages all serverless functions.
```bash
nuctl create project cvat
```
```bash
nuctl deploy --project-name cvat \
--path serverless/openvino/dextr/nuclio \
--volume `pwd`/serverless/openvino/common:/opt/nuclio/common \
--platform local
```
```bash
nuctl deploy --project-name cvat \
--path serverless/openvino/omz/public/yolo-v3-tf/nuclio \
--volume `pwd`/serverless/openvino/common:/opt/nuclio/common \
--platform local
```
Note: see [deploy.sh](/serverless/deploy.sh) script for more examples.
Please follow [instructions](/cvat/apps/documentation/installation_automatic_annotation.md)
### Stop all containers
Expand Down
91 changes: 91 additions & 0 deletions cvat/apps/documentation/installation_automatic_annotation.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@

### Semi-automatic and Automatic Annotation


> **⚠ WARNING: Do not use `docker-compose up`**
> If you did, make sure all containers are stopped by `docker-compose down`.
- To bring up cvat with auto annotation tool, from cvat root directory, you need to run:
```bash
docker-compose -f docker-compose.yml -f components/serverless/docker-compose.serverless.yml up -d
```
If you did any changes to the docker-compose files, make sure to add `--build` at the end.

To stop the containers, simply run:

```bash
docker-compose -f docker-compose.yml -f components/serverless/docker-compose.serverless.yml down
```

- You have to install `nuctl` command line tool to build and deploy serverless
functions. Download [version 1.5.8](https://github.com/nuclio/nuclio/releases).
It is important that the version you download matches the version in
[docker-compose.serverless.yml](/components/serverless/docker-compose.serverless.yml)
After downloading the nuclio, give it a proper permission and do a softlink
```
sudo chmod +x nuctl-<version>-linux-amd64
sudo ln -sf $(pwd)/nuctl-<version>-linux-amd64 /usr/local/bin/nuctl
```

- Create `cvat` project inside nuclio dashboard where you will deploy new serverless functions and deploy a couple of DL models. Commands below should be run only after CVAT has been installed using `docker-compose` because it runs nuclio dashboard which manages all serverless functions.

```bash
nuctl create project cvat
```

```bash
nuctl deploy --project-name cvat \
--path serverless/openvino/dextr/nuclio \
--volume `pwd`/serverless/openvino/common:/opt/nuclio/common \
--platform local
```

```bash
nuctl deploy --project-name cvat \
--path serverless/openvino/omz/public/yolo-v3-tf/nuclio \
--volume `pwd`/serverless/openvino/common:/opt/nuclio/common \
--platform local
```
**Note:**
- See [deploy_cpu.sh](/serverless/deploy_cpu.sh) for more examples.

#### GPU Support
You will need to install Nvidia Container Toolkit and make sure your docker supports GPU. Follow [Nvidia docker instructions](https://www.tensorflow.org/install/docker#gpu_support).
Also you will need to add `--resource-limit nvidia.com/gpu=1` to the nuclio deployment command.
As an example, below will run on the GPU:

```bash
nuctl deploy tf-faster-rcnn-inception-v2-coco-gpu \
--project-name cvat --path "serverless/tensorflow/faster_rcnn_inception_v2_coco/nuclio" --platform local \
--base-image tensorflow/tensorflow:2.1.1-gpu \
--desc "Faster RCNN from Tensorflow Object Detection GPU API" \
--image cvat/tf.faster_rcnn_inception_v2_coco_gpu \
--resource-limit nvidia.com/gpu=1
```

**Note:**
- Since the model is loaded during deployment, the number of GPU functions you can deploy will be limited to your GPU memory.

- See [deploy_gpu.sh](/serverless/deploy_gpu.sh) script for more examples.

####Debugging Nuclio Functions:

- You can open nuclio dashboard at [localhost:8070](http://localhost:8070). Make sure status of your functions are up and running without any error.

- To check for internal server errors, run `docker ps -a` to see the list of containers. Find the container that you are interested, e.g. `nuclio-nuclio-tf-faster-rcnn-inception-v2-coco-gpu`. Then check its logs by

```bash
docker logs <name of your container>
```
e.g.,

```bash
docker logs nuclio-nuclio-tf-faster-rcnn-inception-v2-coco-gpu
```

- If you would like to debug a code inside a container, you can use vscode to directly attach to a container [instructions](https://code.visualstudio.com/docs/remote/attach-container). To apply your changes, make sure to restart the container.
```bash
docker restart <name_of_the_container>
```

> **⚠ WARNING:**
> Do not use nuclio dashboard to stop the container because with any modifications, it rebuilds the container and you will lose your changes.
1 change: 1 addition & 0 deletions serverless/deploy.sh → serverless/deploy_cpu.sh
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
#!/bin/bash
# Sample commands to deploy nuclio functions on CPU

SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

Expand Down
15 changes: 15 additions & 0 deletions serverless/deploy_gpu.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,15 @@
#!/bin/bash
# Sample commands to deploy nuclio functions on GPU

SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

nuctl create project cvat

nuctl deploy --project-name cvat \
--path "$SCRIPT_DIR/tensorflow/faster_rcnn_inception_v2_coco/nuclio" \
--platform local --base-image tensorflow/tensorflow:2.1.1-gpu \
--desc "Faster RCNN from Tensorflow Object Detection GPU API" \
--image cvat/tf.faster_rcnn_inception_v2_coco_gpu \
--resource-limit nvidia.com/gpu=1

nuctl get function
Original file line number Diff line number Diff line change
Expand Up @@ -35,7 +35,8 @@ def infer(self, image):
width, height = image.size
if width > 1920 or height > 1080:
image = image.resize((width // 2, height // 2), Image.ANTIALIAS)
image_np = np.array(image.getdata()).reshape((image.height, image.width, 3)).astype(np.uint8)
image_np = np.array(image.getdata())[:, :3].reshape(
(image.height, image.width, -1)).astype(np.uint8)
image_np = np.expand_dims(image_np, axis=0)

return self.session.run(
Expand Down

0 comments on commit 8343dd7

Please sign in to comment.