Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update model_handler.py #4665

Merged
merged 5 commits into from
Jan 11, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,6 +26,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
The corresponding arguments are keyword-only now.
(<https://github.com/opencv/cvat/pull/5502>)
- Windows Installation Instructions adjusted to work around <https://github.com/nuclio/nuclio/issues/1821>
- The contour detection function for semantic segmentation (<https://github.com/opencv/cvat/pull/4665>)

### Deprecated
- TDB
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -4,11 +4,11 @@
# SPDX-License-Identifier: MIT

import os

import cv2
import numpy as np
from model_loader import ModelLoader
from shared import to_cvat_mask
from skimage.measure import approximate_polygon, find_contours


class ModelHandler:
Expand All @@ -29,26 +29,24 @@ def infer(self, image, threshold):

for i in range(len(self.labels)):
mask_by_label = np.zeros((width, height), dtype=np.uint8)

mask_by_label = ((mask == float(i))).astype(np.uint8)
mask_by_label = ((mask == float(i)) * 255).astype(np.uint8)
mask_by_label = cv2.resize(mask_by_label,
dsize=(image.width, image.height),
interpolation=cv2.INTER_CUBIC)
cv2.normalize(mask_by_label, mask_by_label, 0, 255, cv2.NORM_MINMAX)
interpolation=cv2.INTER_NEAREST)

contours = find_contours(mask_by_label, 0.8)
contours, _ = cv2.findContours(mask_by_label, cv2.RETR_EXTERNAL,
cv2.CHAIN_APPROX_SIMPLE)

for contour in contours:
contour = np.flip(contour, axis=1)
contour = approximate_polygon(contour, tolerance=2.5)

x_min = max(0, int(np.min(contour[:,0])))
x_max = max(0, int(np.max(contour[:,0])))
y_min = max(0, int(np.min(contour[:,1])))
y_max = max(0, int(np.max(contour[:,1])))
if len(contour) < 3:
continue

x_min = max(0, int(np.min(contour[:,:,0])))
x_max = max(0, int(np.max(contour[:,:,0])))
y_min = max(0, int(np.min(contour[:,:,1])))
y_max = max(0, int(np.max(contour[:,:,1])))

cvat_mask = to_cvat_mask((x_min, y_min, x_max, y_max), mask_by_label)

results.append({
Expand Down