Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Improve mask import and export performance #8049

Merged
merged 7 commits into from
Jun 25, 2024
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 3 additions & 18 deletions cvat/apps/dataset_manager/bindings.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,7 +38,7 @@
Task)

from .annotation import AnnotationIR, AnnotationManager, TrackManager
from .formats.transformations import CVATRleToCOCORle, EllipsesToMasks
from .formats.transformations import MaskConverter, EllipsesToMasks

CVAT_INTERNAL_ATTRIBUTES = {'occluded', 'outside', 'keyframe', 'track_id', 'rotation'}

Expand Down Expand Up @@ -1815,7 +1815,7 @@ def _convert_shape(self,
"attributes": dm_attr,
}), self.cvat_frame_anno.height, self.cvat_frame_anno.width)
elif shape.type == ShapeType.MASK:
anno = CVATRleToCOCORle.convert_mask(SimpleNamespace(**{
anno = MaskConverter.cvat_rle_to_dm_rle(SimpleNamespace(**{
"points": shape.points,
"label": dm_label,
"z_order": shape.z_order,
Expand Down Expand Up @@ -2041,22 +2041,7 @@ def import_dm_annotations(dm_dataset: dm.Dataset, instance_data: Union[ProjectDa
if ann.type == dm.AnnotationType.cuboid_3d:
points = [*ann.position, *ann.rotation, *ann.scale, 0, 0, 0, 0, 0, 0, 0]
elif ann.type == dm.AnnotationType.mask:
istrue = np.argwhere(ann.image == 1).transpose()
top = int(istrue[0].min())
left = int(istrue[1].min())
bottom = int(istrue[0].max())
right = int(istrue[1].max())
points = ann.image[top:bottom + 1, left:right + 1]

def reduce_fn(acc, v):
if v == acc['val']:
acc['res'][-1] += 1
else:
acc['val'] = v
acc['res'].append(1)
return acc
points = reduce(reduce_fn, points.reshape(np.prod(points.shape)), { 'res': [0], 'val': False })['res']
points.extend([int(left), int(top), int(right), int(bottom)])
points = MaskConverter.dm_mask_to_cvat_rle(ann)
elif ann.type != dm.AnnotationType.skeleton:
points = ann.points

Expand Down
83 changes: 62 additions & 21 deletions cvat/apps/dataset_manager/formats/transformations.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,5 @@
# Copyright (C) 2021-2022 Intel Corporation
# Copyright (C) 2024 CVAT.ai Corporation
#
# SPDX-License-Identifier: MIT

Expand All @@ -8,10 +9,10 @@
from itertools import chain
from pycocotools import mask as mask_utils

from datumaro.components.extractor import ItemTransform
import datumaro.components.annotation as dm
import datumaro as dm

class RotatedBoxesToPolygons(ItemTransform):

class RotatedBoxesToPolygons(dm.ItemTransform):
def _rotate_point(self, p, angle, cx, cy):
[x, y] = p
rx = cx + math.cos(angle) * (x - cx) - math.sin(angle) * (y - cy)
Expand All @@ -36,28 +37,68 @@ def transform_item(self, item):

return item.wrap(annotations=annotations)

class CVATRleToCOCORle(ItemTransform):
class MaskConverter:
@staticmethod
def convert_mask(shape, img_h, img_w):
rle = shape.points[:-4]
left, top, right = list(math.trunc(v) for v in shape.points[-4:-1])
mat = np.zeros((img_h, img_w), dtype=np.uint8)
width = right - left + 1
value = 0
offset = 0
for rleCount in rle:
rleCount = math.trunc(rleCount)
while rleCount > 0:
x, y = offset % width, offset // width
mat[y + top][x + left] = value
rleCount -= 1
offset += 1
value = abs(value - 1)
def cvat_rle_to_dm_rle(shape, img_h: int, img_w: int) -> dm.RleMask:
"Converts a CVAT RLE to a Datumaro / COCO mask"

rle = mask_utils.encode(np.asfortranarray(mat))
return dm.RleMask(rle=rle, label=shape.label, z_order=shape.z_order,
# use COCO representation of CVAT RLE to avoid python loops
left, top, right, bottom = list(math.trunc(v) for v in shape.points[-4:])
zhiltsov-max marked this conversation as resolved.
Show resolved Hide resolved
h = bottom - top + 1
w = right - left + 1
cvat_as_coco_rle_uncompressed = {
"counts": shape.points[:-4],
"size": [w, h],
}
cvat_as_coco_rle_compressed = mask_utils.frPyObjects(
[cvat_as_coco_rle_uncompressed], h=h, w=w
)[0]

# expand the mask to the full image size
tight_mask = mask_utils.decode(cvat_as_coco_rle_compressed).transpose()
full_mask = np.zeros((img_h, img_w), dtype=np.uint8)
full_mask[top : bottom + 1, left : right + 1] = tight_mask

# obtain RLE
coco_rle = mask_utils.encode(np.asfortranarray(full_mask))
return dm.RleMask(rle=coco_rle, label=shape.label, z_order=shape.z_order,
attributes=shape.attributes, group=shape.group)

@classmethod
def dm_mask_to_cvat_rle(cls, dm_mask: dm.Mask) -> list[int]:
"Converts a Datumaro mask to a CVAT RLE"

# get tight mask
x, y, w, h = dm_mask.get_bbox()
top = int(y)
left = int(x)
bottom = int(max(y, y + h - 1))
right = int(max(x, x + w - 1))
tight_binary_mask = dm_mask.image[top : bottom + 1, left : right + 1]

# obtain RLE
cvat_rle = cls.rle(tight_binary_mask.reshape(-1))
cvat_rle = cvat_rle.tolist()

# CVAT RLE starts from 0
SpecLad marked this conversation as resolved.
Show resolved Hide resolved
if tight_binary_mask[0][0] != 0:
cvat_rle.insert(0, 0)

cvat_rle += [left, top, right, bottom]
return cvat_rle

@classmethod
def rle(cls, arr: np.ndarray) -> np.ndarray:
"Computes RLE for a flat array"
# adapted from https://stackoverflow.com/a/32681075

n = len(arr)
if n == 0:
return np.array([])

pairwise_unequal = arr[1:] != arr[:-1]
return np.diff(np.where(pairwise_unequal)[0], prepend=-1, append=n - 1)
zhiltsov-max marked this conversation as resolved.
Show resolved Hide resolved

class EllipsesToMasks:
@staticmethod
def convert_ellipse(ellipse, img_h, img_w):
Expand Down
Loading