DEfine the next states: $$ \dot{x}_1 = x_2\ \dot{x}_2 = \frac{1}{I}(W\cos{x_1}-\beta x_2+F_hl_m) $$
Can be written as: $$ \dot{x}_1 = x_2\ \dot{x}_2 = \frac{1}{I}[W\cos{x_1}-\beta x_2+(K_f\cdot v+b_f)l_m] $$
$h(x) = \frac{1}{I}(W\cos{x_1}-\beta x_2+b_fl_m)$ $f(x) = \frac{1}{I}(K_fl_m)$
Now, we define an error:
and the next sliding manifold: $$ S = ax_e+x_2 $$
where its derivative is: $$ \dot{S} = a\dot{x}_e+\dot{x}_2\ \dot{S} = a\dot{x}_1+h(x)+f(x)v $$
and the signal control law is: $$ v=-\rho\ \text{sign}(S) $$
To the system stability, we need to define the following: $$ \rho \geq \left|\frac{ax_2+h(x)}{f(x)}\right|\ \rho \geq \left|\frac{ax_2+\frac{1}{I}(W\cos{x_1}-\beta x_2+b_fl_m)}{\frac{1}{I}(K_fl_m)}\right| $$
Taken as limits